Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bionic bacteria may help fight disease and global warming

Salk Institute researchers have built artificially enhanced bacteria capable of producing new kinds of synthetic chemicals

A strain of genetically enhanced bacteria developed by researchers at the Salk Institute for Biological Studies may pave the way for new synthetic drugs and new ways of manufacturing medicines and biofuels, according to a paper published September 18 in Nature Chemical Biology.

For the first time, the scientists were able to create bacteria capable of effectively incorporating "unnatural" amino acids - artificial additions to the 20 naturally occurring amino acids used as biological building blocks - into proteins at multiple sites. This ability may provide a powerful new tool for the study of biological processes and for engineering bacteria that produce new types of synthetic chemicals.

"This provides us with a lot more room to think about what we can do with protein synthesis," said Lei Wang, assistant professor in Salk's Chemical Biology and Proteomics Laboratory and holder of the Frederick B. Rentschler Developmental Chair. "It opens up new possibilities, from creating drugs that last longer in the blood stream to manufacturing chemicals in a more environmentally friendly manner."

In 2001, Wang and his colleagues were the first to create bacteria that incorporated unnatural amino acids (Uaas) into proteins, and, in 2007, they first used the technique in mammalian cells. They did this by creating an "expanded genetic code," overriding the genetic code of the cells and instructing them to use the artificial amino acids in the construction of proteins.

The addition of Uaas changes the chemical properties of proteins, promising new ways to use proteins in research, drug development and chemical manufacturing.

For instance, Wang and his colleagues have inserted Uaas that will glow under a microscope when exposed to certain colors of light. Because proteins serve as the basis for a wide range of cellular functions, the ability to visualize this machinery operating in live cells and in real time helps scientists decipher a wide range of biological mechanisms, including those involved in the development of disease and aging.

Genetically modified bacteria are already used for producing medicines, such as synthetic insulin, which has largely replaced the use of animal pancreases in the manufacture of drugs used by diabetics to regulate their blood sugar levels.

To date, such recombinant DNA technology has used only natural amino acids, which limits the possible functions of the resulting protein products. The ability to insert Uaas could dramatically expand the possible uses of such technology, but one major barrier has limited the use of Uaas: only a single Uaa at a time could be incorporated into a protein.

To insert the instructions for including a Uaa in a bacterium's genetic code, Wang and his colleagues exploited stop codons, special sequences of code in a protein's genetic blueprint. During protein production, stop codons tell the cellular machinery to stop adding amino acids to the sequence that forms backbone of the protein's structure.

In 2001, Wang and his colleagues modified the genetic sequence of the bacteria Escherichia coli to selectively include a stop codon and introduced engineered molecules inside the bacteria, which surgically insert a Uaa at the stop codon. This trained the bacteria to produce proteins with the Uaa incorporated in their backbone.

The problem was that another biological actor, a protein known as release factor 1 (RF1), would stop the production of a Uaa-containing protein too early. Although scientists could insert stop codons for Uaas at multiple places along genetic sequence, the release factor would cut the protein off at the first stop codon, preventing production of long proteins containing multiple Uaas.

"To really make use of this technology, you want to be able to engineer proteins that contain unnatural amino acids at multiple sites, and to produce them in high efficiency," Wang said. "It was really promising, but, until now, really impractical."

In their new paper, the Salk researchers and their collaborators at the University of California, San Diego described how they got around this limitation. Since RF1 hindered production of long Uaa-containing proteins, the scientists removed the gene that produces RF1. Then, because E. Coli dies when the RF1 gene is deleted, they altered production of an alternative actor, release factor 2 (RF2), so that it could rescue the engineered bacterium.

The result was a strain of bacteria capable of efficiently producing proteins containing Uaas at multiple places. These synthetic molecules hold promise for the development of drugs with biological functions far beyond what is possible with proteins that include only naturally occurring amino acids. They may also serve as the basis for manufacturing everything from industrial solvents to biofuels, possibly helping to address the economic and environmental concerns associated with petroleum-based manufacturing and transportation.

"This is the first time we've been able to produce a viable strain of bacteria capable of this," Wang said. "We still have a ways to go, but this makes the possibility of using unnatural amino acids in biological engineering far closer to being reality."

he research was funded by the Beckman Young Investigator Program, the California Institute for Regenerative Medicine, the March of Dimes Foundation, the Mary K. Chapman Foundation, the National Institutes of Health, the National Science Foundation, the Pioneer Fellowship, the Ray Thomas Edwards Foundation and the Searle Scholar Program.

Andy Hoang | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>