Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bionic bacteria may help fight disease and global warming

22.09.2011
Salk Institute researchers have built artificially enhanced bacteria capable of producing new kinds of synthetic chemicals

A strain of genetically enhanced bacteria developed by researchers at the Salk Institute for Biological Studies may pave the way for new synthetic drugs and new ways of manufacturing medicines and biofuels, according to a paper published September 18 in Nature Chemical Biology.

For the first time, the scientists were able to create bacteria capable of effectively incorporating "unnatural" amino acids - artificial additions to the 20 naturally occurring amino acids used as biological building blocks - into proteins at multiple sites. This ability may provide a powerful new tool for the study of biological processes and for engineering bacteria that produce new types of synthetic chemicals.

"This provides us with a lot more room to think about what we can do with protein synthesis," said Lei Wang, assistant professor in Salk's Chemical Biology and Proteomics Laboratory and holder of the Frederick B. Rentschler Developmental Chair. "It opens up new possibilities, from creating drugs that last longer in the blood stream to manufacturing chemicals in a more environmentally friendly manner."

In 2001, Wang and his colleagues were the first to create bacteria that incorporated unnatural amino acids (Uaas) into proteins, and, in 2007, they first used the technique in mammalian cells. They did this by creating an "expanded genetic code," overriding the genetic code of the cells and instructing them to use the artificial amino acids in the construction of proteins.

The addition of Uaas changes the chemical properties of proteins, promising new ways to use proteins in research, drug development and chemical manufacturing.

For instance, Wang and his colleagues have inserted Uaas that will glow under a microscope when exposed to certain colors of light. Because proteins serve as the basis for a wide range of cellular functions, the ability to visualize this machinery operating in live cells and in real time helps scientists decipher a wide range of biological mechanisms, including those involved in the development of disease and aging.

Genetically modified bacteria are already used for producing medicines, such as synthetic insulin, which has largely replaced the use of animal pancreases in the manufacture of drugs used by diabetics to regulate their blood sugar levels.

To date, such recombinant DNA technology has used only natural amino acids, which limits the possible functions of the resulting protein products. The ability to insert Uaas could dramatically expand the possible uses of such technology, but one major barrier has limited the use of Uaas: only a single Uaa at a time could be incorporated into a protein.

To insert the instructions for including a Uaa in a bacterium's genetic code, Wang and his colleagues exploited stop codons, special sequences of code in a protein's genetic blueprint. During protein production, stop codons tell the cellular machinery to stop adding amino acids to the sequence that forms backbone of the protein's structure.

In 2001, Wang and his colleagues modified the genetic sequence of the bacteria Escherichia coli to selectively include a stop codon and introduced engineered molecules inside the bacteria, which surgically insert a Uaa at the stop codon. This trained the bacteria to produce proteins with the Uaa incorporated in their backbone.

The problem was that another biological actor, a protein known as release factor 1 (RF1), would stop the production of a Uaa-containing protein too early. Although scientists could insert stop codons for Uaas at multiple places along genetic sequence, the release factor would cut the protein off at the first stop codon, preventing production of long proteins containing multiple Uaas.

"To really make use of this technology, you want to be able to engineer proteins that contain unnatural amino acids at multiple sites, and to produce them in high efficiency," Wang said. "It was really promising, but, until now, really impractical."

In their new paper, the Salk researchers and their collaborators at the University of California, San Diego described how they got around this limitation. Since RF1 hindered production of long Uaa-containing proteins, the scientists removed the gene that produces RF1. Then, because E. Coli dies when the RF1 gene is deleted, they altered production of an alternative actor, release factor 2 (RF2), so that it could rescue the engineered bacterium.

The result was a strain of bacteria capable of efficiently producing proteins containing Uaas at multiple places. These synthetic molecules hold promise for the development of drugs with biological functions far beyond what is possible with proteins that include only naturally occurring amino acids. They may also serve as the basis for manufacturing everything from industrial solvents to biofuels, possibly helping to address the economic and environmental concerns associated with petroleum-based manufacturing and transportation.

"This is the first time we've been able to produce a viable strain of bacteria capable of this," Wang said. "We still have a ways to go, but this makes the possibility of using unnatural amino acids in biological engineering far closer to being reality."

he research was funded by the Beckman Young Investigator Program, the California Institute for Regenerative Medicine, the March of Dimes Foundation, the Mary K. Chapman Foundation, the National Institutes of Health, the National Science Foundation, the Pioneer Fellowship, the Ray Thomas Edwards Foundation and the Searle Scholar Program.

Andy Hoang | EurekAlert!
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>