Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biomolecular Tweezers Facilitate Study of Mechanical Force Effects on Cells and Proteins

11.03.2014

A new type of biomolecular tweezers could help researchers study how mechanical forces affect the biochemical activity of cells and proteins.

The devices – too small to see without a microscope – use opposing magnetic and electrophoretic forces to precisely stretch the cells and molecules, holding them in position so that the activity of receptors and other biochemical activity can be studied.


Image courtesy of Lizhi Cao

Researchers from Georgia Tech and Emory University have developed a new type of biomolecular tweezers that could help researchers study how mechanical forces affect the biochemical activity of cells and proteins.

Arrays of the tweezers could be combined to study multiple molecules and cells simultaneously, providing a high-throughput capability for assessing the effects of mechanical forces on a broad scale. Details of the devices, which were developed by researchers at the Georgia Institute of Technology and Emory University in Atlanta, were published February 19, 2014, in the journal Technology.

“Our lab has been very interested in mechanical-chemical switches in the extracellular matrix, but we currently have a difficult time interrogating these mechanisms and discovering how they work in vivo,” said Thomas Barker, an associate professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University. “This device could help biologists and biomedical engineers answer questions that cannot be answered right now.”

For example, a cell that’s binding the extracellular matrix may bind with one receptor while the matrix is being stretched, and a different receptor when it’s not under stress. Those binding differences could drive changes in cell phenotype and affect processes such as cell differentiation. But they are now difficult to study.

“Having a device like this will allow us to interrogate what the specific binding sites are and what the specific binding triggers are,” Barker explained. “Right now, we know very little about this area when it comes to protein biochemistry.”

Scientists have been able to study how single cells or proteins are affected by mechanical forces, but their activity can vary considerably from cell-to-cell and among molecules. The new tweezers, which are built using nanolithography, can facilitate studying thousands or more cells and proteins in aggregate. The researchers are currently testing prototype 15 by 15 arrays which they believe could be scaled up.

“For me, it’s not sufficient to pull and hold onto a single protein,” said Barker. “I have to pull and hold onto tens of thousands of proteins to really use the technologies we have to develop molecular probes.”

At the center of the tweezers are 2.8- micron polystyrene microbeads that contain superparamagnetic nanoparticles. The tiny beads are engineered to adhere to a sample being studied. That sample is attached to a bead on one side, and to a magnetic pad on the other. The magnet draws the bead toward it, while an electrophoretic force created by current flowing through a gold wiring pattern pushes the bead away.

“The device simultaneously pushes and pulls on the same particle,” Barker explained. “This allows us to hold the sample at a very specific position above the magnet.”

Because the forces can be varied, the tweezers can be used to study structures of widely different size scales, from protein molecules to cells – a size difference of approximately a thousand times, noted Wilbur Lam, an assistant professor in the Coulter Department. Absolute forces in the nano-Newton range applied by the two sources overcome the much smaller effects of Brownian motion and thermal energy, allowing the tweezers to hold the cells or molecules without constant adjustment.

“We are basically leveraging microchip technology that has been developed by electrical and mechanical engineers,” Lam noted. “We are able to leverage these very tiny features that enable us to create a very sharp electrical field on one end against an opposing short magnetic field. Because there are two ways of controlling it, we have tight resolution and can get to many different scales.”

As a proof of principle for the system, the researchers demonstrated its ability to distinguish between antigen binding to loaded magnetic beads coated with different antibodies. When a sufficient upward force is applied, non-specific antibody coated beads are displaced from the antigen-coated device surface, while beads coated with the specific antibody are more strongly attracted to the surface and retained on it.

Barker and Lam began working together on the tweezers three years ago when they realized they had similar interests in studying the effects of mechanical action on different biological systems.

“We shouldn’t be surprised that biology can be dictated by physical parameters,” Lam explained. “Everything has to obey the laws of physics, and mechanics gets to the heart of that.”

Lam’s interest is at the cellular scale, specifically in blood cells.

“Blood cells also respond differently, biologically, when you squeeze them and when you stretch them,” he said. “For instance, we have learned that mechanics has a lot to do with atherosclerosis, but the systems we currently have for studying this mechanism can only look at single-cell events. If you can look at many cells at once, you get a much better statistical view of what’s happening.”

Barker’s interests, however, are at the molecular level.

“We are primarily interested in evolving antibodies that are capable of distinguishing different force-mediated conformations of proteins,” he explained. “We have a specific protein that we are interested in, but this technique could be applied to any proteins that are suspected to have these force-activated changes in their biochemical activity.”

While the tweezers meet the specific experimental needs of Lam and Barker, the researchers hope to find other applications. The tweezers were developed in collaboration with graduate student Lizhi Cao and post-doctoral fellow Zhengchun Peng.

“Because of the scale we are able to examine – both molecular and cellular – I think this will have a lot of applications both in protein molecular engineering and biotechnology,” Lam said. “This could be a useful way for people to screen relevant molecules because there currently aren’t good ways to do that.”

Beyond biological systems, the device could be used in materials development, microelectronics and even sensing.

“This ability to detect discrete binding and unbinding events between molecular species is of high interest right now,” Barker added. “Biosensor applications come out of this naturally.”

CITATION: Lizhi Cao, et al., “A combined magnetophoresis/dielectrophoresis based microbead array as a high-throughput biomolecular tweezers,” (Technology 2014). http://dx.doi.org/10.1142/S2339547814500058

Research News
Georgia Institute of Technology
177 North Avenue
Atlanta, Georgia 30332-0181

Writer: John Toon

John Toon | newswise
Further information:
http://www.gatech.edu

Further reports about: Biomolecular Cells Technology Tweezers activity binding proteins specific

More articles from Life Sciences:

nachricht New mechanisms uncovered explaining frost tolerance in plants
26.09.2016 | Technische Universität München

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

How to merge two black holes in a simple way

26.09.2016 | Physics and Astronomy

Australian technology installed on world’s largest single-dish radio telescope

26.09.2016 | Physics and Astronomy

New mechanisms uncovered explaining frost tolerance in plants

26.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>