Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biomedical foundation supports technology aimed at destroying cancer cells

18.08.2008
A new technology, using electric pulses to destroy cancer tissue and named by NASA Tech Briefs as one of seven key technological breakthroughs of 2007, is receiving additional support aimed at moving the procedure to the marketplace.
One of its lead developers, Rafael V. Davalos, a faculty member of the Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences (SBES), received a $240,000 grant from the Wallace H. Coulter Foundation and $25,000 from the Wake Forest Comprehensive Cancer Center.

Davalos' grant from Coulter is an Early Career Translational Research Award in Biomedical Engineering. This early career awards program provides funding for assistant professors in established biomedical engineering departments within North America. The award seeks to support biomedical research that Coulter considers promising ­­-- with the goal of progressing toward commercial development.

The technology, irreversible electroporation (IRE), was invented by Davalos and Boris Rubinsky, a bioengineering professor at the University of California, Berkeley.

Electroporation is a phenomenon that increases the permeability of a cell from none to a reversible opening to an irreversible opening. With the latter, the cell will die. For decades, biologists have used reversible electroporation in laboratories to introduce drugs and genes into cells while trying to avoid irreversible electroporation. By contrast, biomedical engineers Davalos and Rubinsky are now using irreversible electroporation to target cancer cells in the body.

Irreversible electroporation would be a minimally invasive surgical focal-ablation technique that could remove the undesirable tissue without the use of heat such as radiation. The irreversible electroporation procedure involves placing small needles near the targeted region. The needles deliver a series of low energy microsecond electric pulses to the targeted tissue and the area treated can be monitored in real time using ultrasound. In laboratory testing, irreversible electroporation destroyed targeted tissue with sub-millimeter resolution, and it proved easy to control and to be precise.

Furthermore, "the procedure spares nerves and major blood vessels, enabling treatment in otherwise inoperable areas," Davalos, the 2006 recipient of the Hispanic Engineer National Achievement Award for Most Promising Engineer, added.

Davalos and his colleagues published the first experiments on using irreversible electroporation on tumors in the November 2007 issue of PLoS ONE. Their optimal parameters achieved complete regression in 92 percent of the treated tumors in vivo in preclinical mouse models. These results were achieved with a single treatment that lasted less than five minutes. Collaborator Lluis M. Mir, director of the Laboratory of Vectorology and Gene Transfer research of the Institut Gustave Rousssy, the leading cancer research center in Europe, and one of the Centre National de la Recherche Scientifique (CNRS), led the study.

In April 2008, Gary Onik (http://www.hopeforprostatecancer.com/gon-onik.asp), a radiologist with Florida Hospital and Rubinsky conducted a pilot study (http://www.hopeforprostatecancer.com/) on five people on soft tissue in the prostate to prove the safety of the procedure on humans.

Davalos' collaborators on the Coulter Foundation grant are: Mir; John Robertson, professor of biomedical science; and John Rossmeisl, an assistant professor of small animal clinical services, both of whom are in the Virginia-Maryland Regional College of Veterinary Medicine and Waldemar Debinski of Wake Forest.

Davalos' Virginia Tech collaborators on the grant from Wake Forest are Robertson and Nichole Rylander, assistant professor of mechanical engineering and also a member of the Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences. Wake Forest researcher Suzy Torti, of its cancer biology department, is also working with the group.

Lynn A. Nystrom | VT News
Further information:
http://www.sbes.vt.edu
http://www.vetmed.vt.edu

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>