Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The Biomechanics of Information

Going more miles per gallon with your brain

The hunting strategy of a slender fish from the Amazon is giving researchers more insight into how to balance the metabolic cost of information with the metabolic cost of moving around to get that information.

A new study from Northwestern University's McCormick School of Engineering and Applied Science answers the question: In behaviors in which you have to move to get information, when should the animal spend more energy on locomotion versus spending more energy on getting more information?

The study is published by the journal PLoS Computational Biology.

Malcolm MacIver, assistant professor of mechanical engineering and of biomedical engineering at McCormick, led a team that analyzed the hunting behavior of the weakly electric black ghost knifefish, native to the Amazon. It hunts at night using a self-generated electric field to sense its surroundings, like a bat uses sonar. This particular animal has become the fruit fly of studies on how animals process sensory information. (The fruit fly has been used extensively to study genetics and developmental biology.)

The fish hunts while its body is tilted downward, which, much like standing up on the pedals of a bicycle while going downhill, causes more than twice as much resistance to movement than if the fish were swimming with no tilt. However, this posture allows the fish to scan a wider area of fresh water and encounter more prey. The researchers found that the increased cost of movement caused by body tilting was more than counterbalanced by increased sensory performance. Past a certain angle of tilt beyond what was naturally observed, the additional cost of moving with the body tilted was greater than the energy gained by sensing more prey.

Neelesh Patankar, associate professor of mechanical engineering at Northwestern, worked with MacIver to develop a hydrodynamic simulation code to calculate the drag forces of the fish when it's hunting and when it's just cruising.

"Once we do simulations we can analyze the hydrodynamics of the fish and come up with an understanding as to why it has to spend energy in this scenario and what is the optimal situation where it can spend minimum energy, for example," said Patankar, a co-author of the study.

"That the fish tilts to be able to scan a larger area for prey despite the energy expense is a very interesting result," MacIver said. "To better understand the way animals are the way they are, we need to not look only at neurological function or only at sensory function -- we have to look at mechanics. We need to think of the intelligence of the body as a central component to our overall intelligence and think of energy saving as cleverness."

The results of the study also suggest that hunting at a drag-inducing position could be the basis for fish's unusual, elongated body.

These findings give insight into certain patterns in animal evolution, such as why we and most other animals have moveable sensory systems like eyes, fingers and arms, MacIver said. "If the fish was able to swivel its region of prey sensitivity, like a vision-based animal can shift its gaze, it would save even more energy," he said. "This conclusion helps us understand why animals like us can move our eyes."

The title of the paper is "Energy-Information Trade-Offs Between Movement and Sensing."

In addition to MacIver and Patankar, the other author of the paper is Anup Shirgaonkar, a former postdoctoral fellow who worked in both MacIver's and Patankar's labs.

The National Science Foundation supported the research.

The study can be found online.

Erin White is the broadcast editor. Contact her at

Erin White | EurekAlert!
Further information:

Further reports about: Amazon basin Biomechanics McCormick Science TV fruit fly

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>