Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biomechanical cell properties highly relevant for cancer research

12.10.2010
Biomechanical changes of cells are a prerequisite for tumor growth and invasion of cancer cells. These new research finding in the field of biophysics of cancer cells were published recently by the group of Prof. Dr. Josef A. Käs together with Prof. Dr. Dr. Michael Höckel (both University of Leipzig, Germany) in an invited article in Nature Physics. The publication is sponsored by the National Cancer Institute in Washington DC.

Based on material’s properties of (cancer) cells the physicist Prof. Dr. Josef A. Käs as well as the medical scientist Prof. Dr. Dr. Michael Höckel came to the following results which could give rise to considerably changes in cancer therapies:

The research team found out that the biomechanical properties of tumor cells promote their growth as well as their invasion within the human body. Three biomechanical properties are in the focus of these observations: First, the outer cytoskeleton, the so called actin cortex of cancer cells is much softer and supports fast growth and cell division.

“We could evidence such behavior in a first clinical study, for example with Prof. Thorsten Remmerbach for oral cancer” claims the physicist. The second striking biomechanical property of cancer cells affects the tumor growth against the normal tissue surrounding the tumor: “Obviously, the cells do not have to stiffen linearly to grow against the environment. We can solve the apparent contradiction by considering that the soft actin cortex gets softer but nevertheless, it can resist high pressures exerted from the surroundings.

In return, elements of the cytoskeleton are pronounced which results in an
overall stiffening of the tumor.” The third biomechanical property considers the ability of metastasizing cancer cells to overcome boundaries between different tissues. “Normal cells usually favor to stay together,” Käs explains. Metastasizing cells can overcome the boundaries by very sensitive reaction on mechanical impulses and contraction. Thus, cancer cells quickly mix with other cells. Together with the ability of self-contraction these cancer cells can leave the primary tumor and metastasize.
The self-contraction is the central observation which is presented in “Nature” to the specialised public and researchers. From these and so far obtained scientific results new approached for diagnostic and therapy can be derived.

In reverse to the cell properties mentioned above, the researchers from Leipzig investigate agents which influence these properties to obtain new possibilities to suppress growth and invasion of tumor cells: “It is still a long way to go. However, we have new approaches for that,” Käs claims. His research is supported by the BMBF project AGESCREEN and EXPRIMAGE, as well as by the DFG Initiative of Excellence within the graduate school BuildMoNa.

The investigation of changes in physical, i.e. material, properties of cells during progression of cancer is an emerging field in physics redefining medical physics and now redefines itself based on material science. The University of Leipzig plays a leading role in this new field.

Meanwhile, the new findings were employed to apply for a patent with the title “Method for diagnosis and/or prognosis of cancer diseases by analysis of the mechanical properties of tumor cells.”

Event announcement:
The minisymposium „Physics of Cancer“ organized by the graduate school BuildMoNa, which is located at the physics and chemistry department of the University of Leipzig, will take place Oct. 25-26, 2010. Thus, world’s leading investigators in this field have accepted the invitation, such as Prof. Roland Eils, German Cancer Research Center Heidelberg (DKFZ), Prof. Francoise Brochard, Institut Curie (Paris), Prof. W. Losert, U.S. National Cancer Institut, as well as Prof. Dr. Dr. Michael Höckel, Medical Department, Universität Leipzig, and Josef A. Käs, Department of Physics and Earth Science, University of Leipzig.

The minisymposium will be opend by the major of Leipzig Burkhard Jung on Oct. 25th, 9 h at the University of Leipzig, Seminargebäude, Room 420, Universitätsstr. 1.

More information:
Prof. Dr. Josef A. Käs
Telefon: +49 341 97-32470
E-Mail: jkaes@physik.uni-leipzig.de

Dr. Manuela Rutsatz | Universität Leipzig
Further information:
http://www.uni-leipzig.de/~pwm

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>