Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Biomechanical cell properties highly relevant for cancer research

Biomechanical changes of cells are a prerequisite for tumor growth and invasion of cancer cells. These new research finding in the field of biophysics of cancer cells were published recently by the group of Prof. Dr. Josef A. Käs together with Prof. Dr. Dr. Michael Höckel (both University of Leipzig, Germany) in an invited article in Nature Physics. The publication is sponsored by the National Cancer Institute in Washington DC.

Based on material’s properties of (cancer) cells the physicist Prof. Dr. Josef A. Käs as well as the medical scientist Prof. Dr. Dr. Michael Höckel came to the following results which could give rise to considerably changes in cancer therapies:

The research team found out that the biomechanical properties of tumor cells promote their growth as well as their invasion within the human body. Three biomechanical properties are in the focus of these observations: First, the outer cytoskeleton, the so called actin cortex of cancer cells is much softer and supports fast growth and cell division.

“We could evidence such behavior in a first clinical study, for example with Prof. Thorsten Remmerbach for oral cancer” claims the physicist. The second striking biomechanical property of cancer cells affects the tumor growth against the normal tissue surrounding the tumor: “Obviously, the cells do not have to stiffen linearly to grow against the environment. We can solve the apparent contradiction by considering that the soft actin cortex gets softer but nevertheless, it can resist high pressures exerted from the surroundings.

In return, elements of the cytoskeleton are pronounced which results in an
overall stiffening of the tumor.” The third biomechanical property considers the ability of metastasizing cancer cells to overcome boundaries between different tissues. “Normal cells usually favor to stay together,” Käs explains. Metastasizing cells can overcome the boundaries by very sensitive reaction on mechanical impulses and contraction. Thus, cancer cells quickly mix with other cells. Together with the ability of self-contraction these cancer cells can leave the primary tumor and metastasize.
The self-contraction is the central observation which is presented in “Nature” to the specialised public and researchers. From these and so far obtained scientific results new approached for diagnostic and therapy can be derived.

In reverse to the cell properties mentioned above, the researchers from Leipzig investigate agents which influence these properties to obtain new possibilities to suppress growth and invasion of tumor cells: “It is still a long way to go. However, we have new approaches for that,” Käs claims. His research is supported by the BMBF project AGESCREEN and EXPRIMAGE, as well as by the DFG Initiative of Excellence within the graduate school BuildMoNa.

The investigation of changes in physical, i.e. material, properties of cells during progression of cancer is an emerging field in physics redefining medical physics and now redefines itself based on material science. The University of Leipzig plays a leading role in this new field.

Meanwhile, the new findings were employed to apply for a patent with the title “Method for diagnosis and/or prognosis of cancer diseases by analysis of the mechanical properties of tumor cells.”

Event announcement:
The minisymposium „Physics of Cancer“ organized by the graduate school BuildMoNa, which is located at the physics and chemistry department of the University of Leipzig, will take place Oct. 25-26, 2010. Thus, world’s leading investigators in this field have accepted the invitation, such as Prof. Roland Eils, German Cancer Research Center Heidelberg (DKFZ), Prof. Francoise Brochard, Institut Curie (Paris), Prof. W. Losert, U.S. National Cancer Institut, as well as Prof. Dr. Dr. Michael Höckel, Medical Department, Universität Leipzig, and Josef A. Käs, Department of Physics and Earth Science, University of Leipzig.

The minisymposium will be opend by the major of Leipzig Burkhard Jung on Oct. 25th, 9 h at the University of Leipzig, Seminargebäude, Room 420, Universitätsstr. 1.

More information:
Prof. Dr. Josef A. Käs
Telefon: +49 341 97-32470

Dr. Manuela Rutsatz | Universität Leipzig
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>