Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensible Use of Biomass

11.11.2011
A chemical industry based on renewable resources

Our industrialized world is largely dependent on fossil resources, whether for the generation of energy, as a fuel, or as a feedstock for the chemical industry.

The environmental problems related to this are known, and these resources will eventually run out. In addition to wind, water, geothermal, and solar energy, biomass is also drawing increasing attention as a renewable resource. In an essay presented in the journal Angewandte Chemie, Esben Taarning and co-workers from the catalyst company Haldor Topsøe and the Lindoe Offshore Renewables Center (Denmark) describe how a sensible transition from petrochemicals to a chemical industry based on biomass might look.

To date, most of the biomass used by industry has been burned to generate energy. According to the authors, in the long term this is not the optimal use. “It is also not the most sensible solution to convert biomass into fuels,” says Taarning. “In the first place, the amount of biomass available does not meet the demand for fuels; in the second, the chemical characteristics of fuels and biomass are too different, so the processes would be too complex and uneconomical.” Means of transportation should be gradually switched to batteries or fuel cells.”

Says Taarning: “In contrast, it really makes sense to use biomass as the feedstock for chemical industry. The available biomass should suffice to replace the fossil feedstocks used in the production of chemicals. The chemical characteristics of biomass and many bulk chemicals are also very similar, so the processes should be more economical than those for the conversion into fuels.”

When we do this, however, we need to diverge from the established value chains: instead of using brute force to convert these raw materials into specific platform chemicals that were originally selected because of their easy accessibility when starting from fossil resources, it would be better to use the interesting chemical characteristics already available in the biomass resources themselves and to optimize the use of favorable catalytic reaction pathways. “Through the clever selection of target chemicals it is possible to significantly increase the value added,” says Taarning. Because the development costs will be high and the first processes inefficient, it makes sense to initially concentrate on high-value products, thereby allowing for faster widespread adoption.

Also, many primary products and by-products of our current biofuel industry could be interesting platform chemicals in themselves: for example, ethanol as a starting material for the production of acetic acid, ethylene, and ethylene glycol, or glycerol for conversion into acrylic acid, a polymer precursor.

“The shift from a fossil-based chemical industry to one based on biomass poses many challenges,” says Taarning, “but the possibilities are also great: to develop a more sustainable chemical industry utilizing a more versatile feedstock supply and producing products with superior properties.”

Author: Esben Taarning, Haldor Topsøe, Lyngby (Denmark), mailto:esta@topsoe.dk
Title: Beyond Petrochemicals: The Renewable Chemicals Industry
Angewandte Chemie International Edition 2011, 50, No. 45, 10502–10509, Permalink to the article: http://dx.doi.org/10.1002/anie.201102117

| Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

A new dead zone in the Indian Ocean could impact future marine nutrient balance

06.12.2016 | Earth Sciences

Significantly more productivity in USP lasers

06.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>