Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensible Use of Biomass

11.11.2011
A chemical industry based on renewable resources

Our industrialized world is largely dependent on fossil resources, whether for the generation of energy, as a fuel, or as a feedstock for the chemical industry.

The environmental problems related to this are known, and these resources will eventually run out. In addition to wind, water, geothermal, and solar energy, biomass is also drawing increasing attention as a renewable resource. In an essay presented in the journal Angewandte Chemie, Esben Taarning and co-workers from the catalyst company Haldor Topsøe and the Lindoe Offshore Renewables Center (Denmark) describe how a sensible transition from petrochemicals to a chemical industry based on biomass might look.

To date, most of the biomass used by industry has been burned to generate energy. According to the authors, in the long term this is not the optimal use. “It is also not the most sensible solution to convert biomass into fuels,” says Taarning. “In the first place, the amount of biomass available does not meet the demand for fuels; in the second, the chemical characteristics of fuels and biomass are too different, so the processes would be too complex and uneconomical.” Means of transportation should be gradually switched to batteries or fuel cells.”

Says Taarning: “In contrast, it really makes sense to use biomass as the feedstock for chemical industry. The available biomass should suffice to replace the fossil feedstocks used in the production of chemicals. The chemical characteristics of biomass and many bulk chemicals are also very similar, so the processes should be more economical than those for the conversion into fuels.”

When we do this, however, we need to diverge from the established value chains: instead of using brute force to convert these raw materials into specific platform chemicals that were originally selected because of their easy accessibility when starting from fossil resources, it would be better to use the interesting chemical characteristics already available in the biomass resources themselves and to optimize the use of favorable catalytic reaction pathways. “Through the clever selection of target chemicals it is possible to significantly increase the value added,” says Taarning. Because the development costs will be high and the first processes inefficient, it makes sense to initially concentrate on high-value products, thereby allowing for faster widespread adoption.

Also, many primary products and by-products of our current biofuel industry could be interesting platform chemicals in themselves: for example, ethanol as a starting material for the production of acetic acid, ethylene, and ethylene glycol, or glycerol for conversion into acrylic acid, a polymer precursor.

“The shift from a fossil-based chemical industry to one based on biomass poses many challenges,” says Taarning, “but the possibilities are also great: to develop a more sustainable chemical industry utilizing a more versatile feedstock supply and producing products with superior properties.”

Author: Esben Taarning, Haldor Topsøe, Lyngby (Denmark), mailto:esta@topsoe.dk
Title: Beyond Petrochemicals: The Renewable Chemicals Industry
Angewandte Chemie International Edition 2011, 50, No. 45, 10502–10509, Permalink to the article: http://dx.doi.org/10.1002/anie.201102117

| Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>