Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensible Use of Biomass

11.11.2011
A chemical industry based on renewable resources

Our industrialized world is largely dependent on fossil resources, whether for the generation of energy, as a fuel, or as a feedstock for the chemical industry.

The environmental problems related to this are known, and these resources will eventually run out. In addition to wind, water, geothermal, and solar energy, biomass is also drawing increasing attention as a renewable resource. In an essay presented in the journal Angewandte Chemie, Esben Taarning and co-workers from the catalyst company Haldor Topsøe and the Lindoe Offshore Renewables Center (Denmark) describe how a sensible transition from petrochemicals to a chemical industry based on biomass might look.

To date, most of the biomass used by industry has been burned to generate energy. According to the authors, in the long term this is not the optimal use. “It is also not the most sensible solution to convert biomass into fuels,” says Taarning. “In the first place, the amount of biomass available does not meet the demand for fuels; in the second, the chemical characteristics of fuels and biomass are too different, so the processes would be too complex and uneconomical.” Means of transportation should be gradually switched to batteries or fuel cells.”

Says Taarning: “In contrast, it really makes sense to use biomass as the feedstock for chemical industry. The available biomass should suffice to replace the fossil feedstocks used in the production of chemicals. The chemical characteristics of biomass and many bulk chemicals are also very similar, so the processes should be more economical than those for the conversion into fuels.”

When we do this, however, we need to diverge from the established value chains: instead of using brute force to convert these raw materials into specific platform chemicals that were originally selected because of their easy accessibility when starting from fossil resources, it would be better to use the interesting chemical characteristics already available in the biomass resources themselves and to optimize the use of favorable catalytic reaction pathways. “Through the clever selection of target chemicals it is possible to significantly increase the value added,” says Taarning. Because the development costs will be high and the first processes inefficient, it makes sense to initially concentrate on high-value products, thereby allowing for faster widespread adoption.

Also, many primary products and by-products of our current biofuel industry could be interesting platform chemicals in themselves: for example, ethanol as a starting material for the production of acetic acid, ethylene, and ethylene glycol, or glycerol for conversion into acrylic acid, a polymer precursor.

“The shift from a fossil-based chemical industry to one based on biomass poses many challenges,” says Taarning, “but the possibilities are also great: to develop a more sustainable chemical industry utilizing a more versatile feedstock supply and producing products with superior properties.”

Author: Esben Taarning, Haldor Topsøe, Lyngby (Denmark), mailto:esta@topsoe.dk
Title: Beyond Petrochemicals: The Renewable Chemicals Industry
Angewandte Chemie International Edition 2011, 50, No. 45, 10502–10509, Permalink to the article: http://dx.doi.org/10.1002/anie.201102117

| Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>