Biomarkers for identifying Tumor Aggressiveness

Early-stage colon cancer patients could benefit in the future from specific genetic tests that forecast their prognosis and help them make the right decision regarding chemotherapy.

Two of the biomarkers involved are the MACC1 gene, high levels of which promote aggressive tumor growth and the development of metastasis, and a defective DNA mismatch repair (dMMR) system, which plays a role in tumor formation. Life expectancy is longer for patients with dMMR tumors and with low MACC1 gene activity.

Blood tests can help predict chemotherapy success

Colon cancer is the second most common type of cancer in Germany, affecting around 60,000 male and female patients every year. The five-year survival rate averages 70 percent. Treatment success is largely dependent on whether the tumor is detected early on, whether it can be completely surgically removed, and whether it responds to chemotherapy.

In recent years, scientists have successfully identified genetic subtypes of malignant colon tumors, all of which carry a different prognosis for how the disease will develop. Up to 15 percent of these malignant tumors, for example, exhibit defective DNA repair mechanisms – known as DNA mismatch repair deficiency or dMMR.

Another important biomarker is the gene MACC1 (metastasis-associated in colon cancer 1), which was identified by Ulrike Stein and her colleagues at MDC in 2009. There is now a patented blood test for MACC1 detection.

The five-year survival rate for patients with stage I-III colon cancer who exhibit low levels of MACC1 lies at 80 percent – in comparison to just 15 percent for patients with high MACC1 levels. “The blood test can indicate whether there is a higher risk of the tumor returning or metastasizing,” says Stein. “It helps with the difficult decision of whether early-stage patients should receive chemotherapy.” This now also includes patients in stage II of the disease with impaired DNA repair mechanisms.

In an editorial, also published in Annals of Oncology, scientists at Houston’s MD Anderson Cancer Center quote this study as further proof of how important it is to identify genetic subtypes and subtype combinations even in the early stages of the cancer, not least to help with prognosis and decisions regarding chemotherapy. They recommend that, in the future, genetic test results should be combined with further genetic and epigenetic data from patients, “in order to understand the prognostic value of the complex molecular scenarios of early-stage colon cancer.”

The Max Delbrück Center for Molecular Medicine (MDC)

The Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) was founded in Berlin in 1992. It is named for the German-American physicist Max Delbrück who was awarded the 1969 Nobel Prize in Physiology and Medicine. The MDC’s mission is to study molecular mechanisms in order to understand the origins of disease and thus be able to diagnose, prevent and fight it better and more effectively.

In these efforts the MDC cooperates with the Charité – Universitätsmedizin Berlin and the Berlin Institute of Health (BIH) as well as with national partners such as the German Center for Cardiovascular Research and numerous international research institutions. More than 1,600 staff and guests from nearly 60 countries work at the MDC, just shy of 1,300 of them in scientific research. The MDC is financed by the Federal Ministry of Education and Research (90 percent) and the State of Berlin (10 percent) and is a member of the Helmholtz Association of German Research Centres.

Reference:

U.-P. Rohr, P. Herrmann, K. Ilm, H. Zhang, S. Lohmann, A. Reiser, A. Muranyi, J. Smith, S. Burock, M. Osterland, K. Leith, S. Singh, P. Brunhoeber, R. Bowermaster, J. Tie, M. Christie, H.-L. Wong, P. Waring, K. Shanmugam, P. Gibbs, U. Stein (2017): “Prognostic value of MACC1 and proficient mismatch repair status for recurrence risk prediction in stage II colon cancer patients: the BIOGRID studies.” Annals of Oncology. doi:10.1093/annonc/mdx207

https://insights.mdc-berlin.de/en/2017/07/biomarkers-identifying-tumor-aggressiv… – This media release at the website of the MDC
https://www.mdc-berlin.de/internet/1151921/ – Website of the Stein lab
https://academic.oup.com/annonc/article-lookup/doi/10.1093/annonc/mdx207 – Publication at Annals of Oncology website

Media Contact

Annette Tuffs Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors