Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biomarkers detected for Chikungunya fever

06.03.2009
Singapore research findings may expedite patient identification, monitoring

Three specific biomarkers provide an accurate indication of the severity of Chikungunya fever (CHIKF), which is emerging as a threat in South-East Asia, the Pacific and Europe, according to research conducted in Singapore.

Since the biomarkers can be easily detected and measured in blood, this finding could expedite identification and monitoring of patients.

The study, the first comprehensive investigation of the many biological factors such as cytokines and chemokines produced in the human body in response to Chikungunya virus infection, was conducted by researchers at A*STAR's Singapore Immunology Network (SIgN) and the Communicable Disease Centre (CDC) at Singapore's Tan Tock Seng Hospital (TTSH).

Cytokines are proteins, peptides or glycoproteins that belong to a category of signaling molecules that, like hormones and neurotransmitters, are used extensively in cellular communication. Chemokines are small cytokines of relatively low molecular weight that are released by a variety of cells.

The Singapore scientists found that levels of three specific biological factors, interleukin-1, beta, (IL-1â), interleukin-6 (IL-6) and RANTES, distinguished patients with the severe form of the disease from those in whom the infection was mild.

The findings of the study, conducted on blood samples obtained from 10 patients who developed the disease during Singapore's CHIKF outbreak in Jan. 2008, were published online one year later (Jan. 2009) by the PLoS ONE.

Lisa Ng, Ph.D., principal investigator of the Chikungunya research team at SIgN and co-author of the PLoS ONE article, said, "This first comprehensive report, which examines the cellular signals produced as part of the human immune response to Chikungunya virus infection, enables us to understand the changes in molecular signals in the body when infection sets in. These biomarkers can potentially lead to the development of therapeutics to reduce the severity of the disease and halt its progression."

Dr. Ng and her colleagues discovered that an increase in the levels of IL-1â and IL-6, with a concomitant decrease in RANTES, was an indication of a severe form of CHIKF. This finding would allow for quicker and more accurate prognosis of infected patients.

The scientists also determined that the level of RANTES was lower in patients with severe CHIKF, as compared to those with dengue. This result could potentially enable physicians and scientists to distinguish quickly between CHIKF and dengue fever – two diseases that present clinically similar symptoms.

SIgN Chairman Philippe Kourilsky, Ph.D., said, "This is indeed a significant breakthrough in the research on Chikungunya fever, which is emerging as a threat in South-East Asia, the Pacific and Europe. The landmark findings are a testament to the successful collaboration between a basic research institute and a hospital, where both parties combine their resources and expertise to achieve clinical relevance. SIgN will continue to work with our partners in the hospitals to better understand the disease and translate such findings into relevant clinical outcomes." In addition to TTSH, SIgN has clinical collaborations with Alexandra Hospital, Singapore General Hospital and National University Hospital, in research areas such as immunology and cancer studies.

Associate Professor Leo Yee Sin, M.D., Clinical Director of CDC at TTSH, said, "This study proves that cytokines could be used as biomarkers in predicting the severity of the disease. They provide immunological information for us to understand the causal effect of Chikungunya in the human host. Further research along a similar vein is ongoing with a larger number of cases from later Chikungunya outbreaks that had occurred in Singapore."

Research is now underway in Singapore to ascertain the immune and pathogenic mechanisms behind CHIKF, which could guide the development of future therapeutic applications.

This research is being conducted through a follow-up on more than 100 cases of CHIKF, to further refine the understanding of CHIKF clinical manifestation over a prolonged period of time.

Prof. Leo added, "We are hopeful that our research endeavor can further our understanding of Chikungunya and enable us to apply the knowledge gained to better manage the disease".

With outbreaks in the Pacific region in recent years, CHIKF has emerged as a potentially serious international health threat. However, little is known about the disease progression and the immune response in patients. In late 2007, SIgN initiated clinical immunology research on Chikungunya led by Dr. Lisa Ng to study the immunological process of CHIKF.

During the 2008 outbreak of CHIKF in Singapore, the CDC team led by Associate Professor Leo Yee Sin, Clinical Director of the CDC, TTSH, responded swiftly to contain it and set up outbreak research through the support of National Healthcare Group Domain-Specific Review Boards. CDC's swift action enabled prospective sample collection at a very early stage of the outbreak, which allowed the research team to study early cytokine response.

Cathy Yarbrough | EurekAlert!
Further information:
http://www.a-star.edu.sg

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>