Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biomarker predicts effectiveness of brain cancer treatment

02.07.2014

Researchers at the University of California, San Diego School of Medicine have identified a new biomarker that predicts whether glioblastoma – the most common form of primary brain cancer – will respond to chemotherapy. The findings are published in the July print issue of Oncotarget.

Clark Chen, University of California - San Diego

This is Clark C. Chen, M.D., Ph.D., neurosurgeon, UC San Diego Health System

Credit: UC San Diego School of Medicine

"Every patient diagnosed with glioblastoma is treated with a chemotherapy called temozolomide. About 15 percent of these patients derive long-lasting benefit," said Clark C. Chen, MD, PhD, vice-chairman of Academic Affairs, Division of Neurosurgery, UC San Diego School of Medicine and the study's principal investigator.

"We need to identify which patients benefit from temozolomide and which another type of treatment. All therapies involve risk and the possibility of side-effects. Patients should not undergo therapies if there's no likelihood of benefit."

To pinpoint which patients were most likely respond to temozolomide, the researchers studied microRNAs that control the expression of a protein called methyl-guanine-methyl-transferase or MGMT. This protein dampens the cancer-killing effect of temozolomide. Tumors with high levels of MGMT are associated with a poor response to temozolomide therapy.

The scientists systematically tested every microRNA in the human genome to identify those that suppressed MGMT expression, with the expectation that high-levels of these microRNAs in the tumor would predict improved therapeutic response to temozolomide.

"We showed that a signature of the MGMT-regulating microRNAs predicted temozolomide response in a cohort of glioblastoma patients. Validation of these results should lead to diagnostic tools to enable us to determine which patients will benefit most from temozolomide therapy," said Chen.

In the study, the scientists also discovered that injection of the MGMT-regulating microRNAs into glioblastoma cells increased tumor sensitivity to temozolomide treatment.

"These findings establish the foundation for microRNAs-based therapies to increase the efficacy of temozolomide in glioblastoma patients," said lead author, Valya Ramakrishnan, PhD, postdoctoral researcher, UC San Diego School of Medicine.

###

Contributors to this paper included Deepa Kushwaha, Dipanjan Chowdhury and Kimberly Ng of Dana-Farber Cancer Institute; Jann Sarkaria of Mayo Clinic; Tao Jiang of Tiantan Medical Center; and Tyler Steed, Thien Nguyen, Diahnn Futalan, Johnny Akers and Bob S. Carter of UC San Diego.

Funding for this research came, in part, from the Sontag Foundation, Burroughs Wellcome Foundation, Kimmel Foundation, and the Forbeck Foundation.

Jackie Carr | Eurek Alert!

Further reports about: Biomarker Chemotherapy MGMT Medicine MicroRNA temozolomide therapies

More articles from Life Sciences:

nachricht Staph ‘Gangs’ Share Nutrients During Infection
21.10.2014 | Vanderbilt University Medical Center

nachricht New Insight That “Mega” Cells Control the Growth of Blood-Producing Cells
21.10.2014 | Stowers Institute for Medical Research

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

Event News

Battery Conference April 2015 in Aachen

16.10.2014 | Event News

Experts discuss new developments in the field of stem cell research and cell therapy

10.10.2014 | Event News

Zoonoses: Global collaboration is more important than ever

07.10.2014 | Event News

 
Latest News

Exploring X-Ray phase tomography with synchrotron radiation

21.10.2014 | Medical Engineering

World record in data transmission with smart circuits

21.10.2014 | Information Technology

Scientists restore hearing in noise-deafened mice, pointing way to new therapies

21.10.2014 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>