Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biomarker predicts effectiveness of brain cancer treatment

02.07.2014

Researchers at the University of California, San Diego School of Medicine have identified a new biomarker that predicts whether glioblastoma – the most common form of primary brain cancer – will respond to chemotherapy. The findings are published in the July print issue of Oncotarget.

Clark Chen, University of California - San Diego

This is Clark C. Chen, M.D., Ph.D., neurosurgeon, UC San Diego Health System

Credit: UC San Diego School of Medicine

"Every patient diagnosed with glioblastoma is treated with a chemotherapy called temozolomide. About 15 percent of these patients derive long-lasting benefit," said Clark C. Chen, MD, PhD, vice-chairman of Academic Affairs, Division of Neurosurgery, UC San Diego School of Medicine and the study's principal investigator.

"We need to identify which patients benefit from temozolomide and which another type of treatment. All therapies involve risk and the possibility of side-effects. Patients should not undergo therapies if there's no likelihood of benefit."

To pinpoint which patients were most likely respond to temozolomide, the researchers studied microRNAs that control the expression of a protein called methyl-guanine-methyl-transferase or MGMT. This protein dampens the cancer-killing effect of temozolomide. Tumors with high levels of MGMT are associated with a poor response to temozolomide therapy.

The scientists systematically tested every microRNA in the human genome to identify those that suppressed MGMT expression, with the expectation that high-levels of these microRNAs in the tumor would predict improved therapeutic response to temozolomide.

"We showed that a signature of the MGMT-regulating microRNAs predicted temozolomide response in a cohort of glioblastoma patients. Validation of these results should lead to diagnostic tools to enable us to determine which patients will benefit most from temozolomide therapy," said Chen.

In the study, the scientists also discovered that injection of the MGMT-regulating microRNAs into glioblastoma cells increased tumor sensitivity to temozolomide treatment.

"These findings establish the foundation for microRNAs-based therapies to increase the efficacy of temozolomide in glioblastoma patients," said lead author, Valya Ramakrishnan, PhD, postdoctoral researcher, UC San Diego School of Medicine.

###

Contributors to this paper included Deepa Kushwaha, Dipanjan Chowdhury and Kimberly Ng of Dana-Farber Cancer Institute; Jann Sarkaria of Mayo Clinic; Tao Jiang of Tiantan Medical Center; and Tyler Steed, Thien Nguyen, Diahnn Futalan, Johnny Akers and Bob S. Carter of UC San Diego.

Funding for this research came, in part, from the Sontag Foundation, Burroughs Wellcome Foundation, Kimmel Foundation, and the Forbeck Foundation.

Jackie Carr | Eurek Alert!

Further reports about: Biomarker Chemotherapy MGMT Medicine MicroRNA temozolomide therapies

More articles from Life Sciences:

nachricht Bats use the evening sky’s polarization pattern for orientation
22.07.2014 | Max Planck Institute for Ornithology, Seewiesen School of Biological Sciences, Queen’s University Belfast, UK

nachricht Oregon chemists eye improved thin films with metal substitution
22.07.2014 | University of Oregon

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

Event News

“Lens on Life” - Artists and Scientists Explore Cell Divison

08.07.2014 | Event News

First International Conference on Consumer Research | ICCR 2014: Early bird deadline July 31, 2014

08.07.2014 | Event News

First evidence for painless atrial fibrillation treatment

04.07.2014 | Event News

 
Latest News

Siemens installs two offshore platforms for TenneT in the North Sea in July

22.07.2014 | Press release

Hubble traces the halo of a galaxy more accurately than ever before

22.07.2014 | Physics and Astronomy

Quantum leap in lasers at Dartmouth brightens future for quantum computing

22.07.2014 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>