Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biomarker MIA shows presence of neurofibromas

04.07.2011
Neurofibromatosis (NF1) is a genetic condition which affects one in every 3,000 people.

The severity of symptoms can range from benign 'café au lait' patches on the skin, through small tumors under the skin and deep plexiform neurofibromas, to malignant tumors of the nerve sheath.

New research published in BioMed Central's open access journal BMC Medicine shows that a simple blood test for the protein melanoma-inhibitory activity (MIA) could be used to indicate the presence of neurofibromas even if they cannot be seen.

When researchers compared the levels of MIA from blood of patients with NF1 and unaffected controls they discovered that the patients with NF1 had much higher serum levels of MIA and that the level of MIA depended on the number and size of neurofibromas and plexiform neurofibromas the patient had. Tumor biopsies also showed an increase in MIA at the cellular level.

Dr Kolanczyk said, "Using the biomarker MIA to test for the presence and growth of plexiform neurofibromas would be an easier and cheaper way of monitoring clinical course of the patients and would allow the early detection of tumors so improving the treatment, management and outcome. Detection of deep plexiform neurofibroma is currently only possible using MRI scan and since these tumors can become malignant it is important to monitor their growth closely and detect signs of malignant transformation as early as possible."

Notes to Editors

1. MIA is a potential biomarker for tumor load in neurofibromatosis type 1
Mateusz Kolanczyk, Victor Mautner, Nadine Kossler, Rosa Nguyen, Jirko Kühnisch, Tomasz Zemojtel, Aleksander Jamsheer, Eike Wegener, Boris Thurisch, Sigrid Tinschert, Nikola Holtkamp, Su-Jin Park, Patricia Birch, David Kendler, Anja Harder, Stefan Mundlos and Lan Kluwe

BMC Medicine (in press)

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

Article citation and URL available on request at press@biomedcentral.com on the day of publication.

2. BMC Medicine - the flagship medical journal of the BMC series - publishes original research articles, commentaries and reviews in all areas of medical science and clinical practice. To be appropriate for BMC Medicine, articles need to be of outstanding quality, broad interest and special importance. BMC Medicine (ISSN 1741-7015) is indexed/tracked/covered by PubMed, MEDLINE, BIOSIS, CAS, EMBASE, Scopus, Current Contents, Thomson Reuters (ISI) and Google Scholar.

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Dr. Hilary Glover | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>