Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biomarker MIA shows presence of neurofibromas

04.07.2011
Neurofibromatosis (NF1) is a genetic condition which affects one in every 3,000 people.

The severity of symptoms can range from benign 'café au lait' patches on the skin, through small tumors under the skin and deep plexiform neurofibromas, to malignant tumors of the nerve sheath.

New research published in BioMed Central's open access journal BMC Medicine shows that a simple blood test for the protein melanoma-inhibitory activity (MIA) could be used to indicate the presence of neurofibromas even if they cannot be seen.

When researchers compared the levels of MIA from blood of patients with NF1 and unaffected controls they discovered that the patients with NF1 had much higher serum levels of MIA and that the level of MIA depended on the number and size of neurofibromas and plexiform neurofibromas the patient had. Tumor biopsies also showed an increase in MIA at the cellular level.

Dr Kolanczyk said, "Using the biomarker MIA to test for the presence and growth of plexiform neurofibromas would be an easier and cheaper way of monitoring clinical course of the patients and would allow the early detection of tumors so improving the treatment, management and outcome. Detection of deep plexiform neurofibroma is currently only possible using MRI scan and since these tumors can become malignant it is important to monitor their growth closely and detect signs of malignant transformation as early as possible."

Notes to Editors

1. MIA is a potential biomarker for tumor load in neurofibromatosis type 1
Mateusz Kolanczyk, Victor Mautner, Nadine Kossler, Rosa Nguyen, Jirko Kühnisch, Tomasz Zemojtel, Aleksander Jamsheer, Eike Wegener, Boris Thurisch, Sigrid Tinschert, Nikola Holtkamp, Su-Jin Park, Patricia Birch, David Kendler, Anja Harder, Stefan Mundlos and Lan Kluwe

BMC Medicine (in press)

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

Article citation and URL available on request at press@biomedcentral.com on the day of publication.

2. BMC Medicine - the flagship medical journal of the BMC series - publishes original research articles, commentaries and reviews in all areas of medical science and clinical practice. To be appropriate for BMC Medicine, articles need to be of outstanding quality, broad interest and special importance. BMC Medicine (ISSN 1741-7015) is indexed/tracked/covered by PubMed, MEDLINE, BIOSIS, CAS, EMBASE, Scopus, Current Contents, Thomson Reuters (ISI) and Google Scholar.

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Dr. Hilary Glover | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>