Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biomarker in an aggressive breast cancer is identified

20.08.2014

Overactive protein in basal-like carcinoma offers target for new therapeutics

Two Northwestern University scientists have identified a biomarker strongly associated with basal-like breast cancer, a highly aggressive carcinoma that is resistant to many types of chemotherapy. The biomarker, a protein called STAT3, provides a smart target for new therapeutics designed to treat this often deadly cancer.

Using breast cancer patient data taken from The Cancer Genome Atlas, molecular biologists Curt M. Horvath and Robert W. Tell used powerful computational and bioinformatics techniques to detect patterns of gene expression in two cancer subtypes. They found that a small number of genes are activated by STAT3 protein signaling in basal-like breast cancers but not in luminal breast cancers.

Basal-like cancer is a category that includes a number of different breast cancers, including the highly aggressive form called triple negative cancer.

"You can't treat breast cancer as one disease," Horvath said. "Cancer describes many molecular processes that have gone wrong. We have teased out from large amounts of data that STAT3 activity correlates with distinct patterns of gene expression in one type of breast cancer but not in another."

The findings are published today (Aug. 19) in the online early edition of the journal Proceedings of the National Academy of Sciences (PNAS).

The results suggest a clinical study should be conducted of a STAT3-inhibiting drug in patients with basal-like and luminal cancers, Horvath said. Currently there are no pills or injections targeting STAT3 for breast cancer patients.

Horvath is a professor of molecular biosciences in Northwestern's Weinberg College of Arts and Sciences and a professor of microbiology-immunology and of medicine at Northwestern University Feinberg School of Medicine.

Previous research has found the STAT3 protein to be overactive in many breast cancers, but its role has not been well understood. Horvath and Tell's research is the first reported study to compare breast cancer subtypes and gene expression patterns associated with STAT3 in the tumors of human patients.

Horvath emphasized that this is a statistical analysis and the findings need to be verified with careful laboratory and clinical experiments. He plans to conduct such a study with colleagues at the Robert H. Lurie Comprehensive Cancer Center of Northwestern University.

"The Cancer Genome Atlas is a really rich and growing database of publicly available data created to help us understand cancer," said Horvath, who is a program co-leader of the Signal Transduction in Cancer program at the Lurie Cancer Center. "It allows basic scientists to ask interesting questions about cancer and contribute to clinical care."

Horvath and Tell observed that there are many clearly visible patterns of common gene expression -- where certain genes are turned on and certain genes are turned off -- in the basal-like cancers. Those clear patterns were not seen in the luminal cancers.

"This opens up the possibility that cancer subtype-specific signaling is driven by STAT3 and that STAT3 inhibitors may be more effective in patients diagnosed with basal-like cancers than in those with luminal cancers," Horvath said.

STAT3 stands for "signal transducer and activator of transcription 3," a transcription factor (a protein) encoded by the STAT3 gene in humans. In addition to its known roles in cancerous cells, STAT3 also is an essential mediator of cytokine and growth factor signals in normal cells that are important for diverse processes including immunity and inflammation.

Tell, a postdoctoral fellow in Horvath's lab, had a strong interest in cancer and was very skilled at computational bioinformatics. To design the study, he combined these two elements with the long-time focus of Horvath's lab on STAT3, which has been implicated in cancer in general, as both a causative agent and a survival factor.

Horvath and Tell identified 84 genes that are expressed differently in basal-like cancer tumors as compared to luminal cancer tumors. These genes are highly representative of the immune response and inflammation processes, Horvath said, and consistent with the role of STAT3.

Tell and Horvath's intensive analysis used data from 825 breast cancer patients from across the country, each with hundreds of data points. The data included protein expression, protein phosphorylation, which indicates which signaling pathways are activated, and messenger RNA and microRNA expression.

To sort through the vast amounts of data, the researchers took advantage of Quest, a high-performance computing system at Northwestern. The computer cluster they used offered the equivalent of the processors and random-access memory (RAM) of eight powerful desktop computers linked together.

The title of the paper is "Bioinformatic analysis reveals a pattern of STAT3-associated gene expression specific to basal-like breast cancers in human tumors." Horvath and Tell are the authors of the paper.

Megan Fellman | Eurek Alert!
Further information:
http://www.northwestern.edu

Further reports about: Biomarker Cancer aggressive breast factor findings genes processes tumors

More articles from Life Sciences:

nachricht Gene switch may repair DNA and prevent cancer
12.02.2016 | Institute for Integrated Cell-Material Sciences at Kyoto University

nachricht New method opens crystal clear views of biomolecules
11.02.2016 | Deutsches Elektronen-Synchrotron DESY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Symposium on Climate Change Adaptation in Africa 2016

12.02.2016 | Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

 
Latest News

LIGO confirms RIT's breakthrough prediction of gravitational waves

12.02.2016 | Physics and Astronomy

Gene switch may repair DNA and prevent cancer

12.02.2016 | Life Sciences

Using 'Pacemakers' in spinal cord injuries

12.02.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>