Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biomarker in an aggressive breast cancer is identified

20.08.2014

Overactive protein in basal-like carcinoma offers target for new therapeutics

Two Northwestern University scientists have identified a biomarker strongly associated with basal-like breast cancer, a highly aggressive carcinoma that is resistant to many types of chemotherapy. The biomarker, a protein called STAT3, provides a smart target for new therapeutics designed to treat this often deadly cancer.

Using breast cancer patient data taken from The Cancer Genome Atlas, molecular biologists Curt M. Horvath and Robert W. Tell used powerful computational and bioinformatics techniques to detect patterns of gene expression in two cancer subtypes. They found that a small number of genes are activated by STAT3 protein signaling in basal-like breast cancers but not in luminal breast cancers.

Basal-like cancer is a category that includes a number of different breast cancers, including the highly aggressive form called triple negative cancer.

"You can't treat breast cancer as one disease," Horvath said. "Cancer describes many molecular processes that have gone wrong. We have teased out from large amounts of data that STAT3 activity correlates with distinct patterns of gene expression in one type of breast cancer but not in another."

The findings are published today (Aug. 19) in the online early edition of the journal Proceedings of the National Academy of Sciences (PNAS).

The results suggest a clinical study should be conducted of a STAT3-inhibiting drug in patients with basal-like and luminal cancers, Horvath said. Currently there are no pills or injections targeting STAT3 for breast cancer patients.

Horvath is a professor of molecular biosciences in Northwestern's Weinberg College of Arts and Sciences and a professor of microbiology-immunology and of medicine at Northwestern University Feinberg School of Medicine.

Previous research has found the STAT3 protein to be overactive in many breast cancers, but its role has not been well understood. Horvath and Tell's research is the first reported study to compare breast cancer subtypes and gene expression patterns associated with STAT3 in the tumors of human patients.

Horvath emphasized that this is a statistical analysis and the findings need to be verified with careful laboratory and clinical experiments. He plans to conduct such a study with colleagues at the Robert H. Lurie Comprehensive Cancer Center of Northwestern University.

"The Cancer Genome Atlas is a really rich and growing database of publicly available data created to help us understand cancer," said Horvath, who is a program co-leader of the Signal Transduction in Cancer program at the Lurie Cancer Center. "It allows basic scientists to ask interesting questions about cancer and contribute to clinical care."

Horvath and Tell observed that there are many clearly visible patterns of common gene expression -- where certain genes are turned on and certain genes are turned off -- in the basal-like cancers. Those clear patterns were not seen in the luminal cancers.

"This opens up the possibility that cancer subtype-specific signaling is driven by STAT3 and that STAT3 inhibitors may be more effective in patients diagnosed with basal-like cancers than in those with luminal cancers," Horvath said.

STAT3 stands for "signal transducer and activator of transcription 3," a transcription factor (a protein) encoded by the STAT3 gene in humans. In addition to its known roles in cancerous cells, STAT3 also is an essential mediator of cytokine and growth factor signals in normal cells that are important for diverse processes including immunity and inflammation.

Tell, a postdoctoral fellow in Horvath's lab, had a strong interest in cancer and was very skilled at computational bioinformatics. To design the study, he combined these two elements with the long-time focus of Horvath's lab on STAT3, which has been implicated in cancer in general, as both a causative agent and a survival factor.

Horvath and Tell identified 84 genes that are expressed differently in basal-like cancer tumors as compared to luminal cancer tumors. These genes are highly representative of the immune response and inflammation processes, Horvath said, and consistent with the role of STAT3.

Tell and Horvath's intensive analysis used data from 825 breast cancer patients from across the country, each with hundreds of data points. The data included protein expression, protein phosphorylation, which indicates which signaling pathways are activated, and messenger RNA and microRNA expression.

To sort through the vast amounts of data, the researchers took advantage of Quest, a high-performance computing system at Northwestern. The computer cluster they used offered the equivalent of the processors and random-access memory (RAM) of eight powerful desktop computers linked together.

The title of the paper is "Bioinformatic analysis reveals a pattern of STAT3-associated gene expression specific to basal-like breast cancers in human tumors." Horvath and Tell are the authors of the paper.

Megan Fellman | Eurek Alert!
Further information:
http://www.northwestern.edu

Further reports about: Biomarker Cancer aggressive breast factor findings genes processes tumors

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>