Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biomarker could help doctors tailor treatment for rheumatoid arthritis

01.02.2010
Investigators have identified a biomarker that could help doctors select patients with rheumatoid arthritis who will benefit from therapy with drugs such as Enbrel, a tumor necrosis factor (TNF)-antagonist drug.

The study, led by researchers at Hospital for Special Surgery in collaboration with rheumatologists at University of Southern California, appears in the February issue of the journal Arthritis & Rheumatism.

"While our study was performed on a relatively small group of patients and will need to be confirmed in a larger cohort, the data are promising and may be clinically significant for the medical management of patients," said Mary K. Crow, M.D., director of Rheumatology Research and co-director of the Mary Kirkland Center for Lupus Research at Hospital for Special Surgery. "Treatment with these drugs is very expensive; the drugs can cost around $16,000 or so per year. If you are going to use them, you would like to know that they are likely to work in your patient." Other well-known TNF-antagonists include Humira and Remicade.

While TNF antagonists have brought relief to thousands of people with rheumatoid arthritis, the drugs are not highly effective in 30 percent to 50 percent of patients. Clinicians thus run the risk of providing a therapy to patients that doesn't work well, is expensive and is potentially toxic. Patients taking TNF antagonists, which have been available for roughly ten years, can run the risk of developing bacterial or fungal infections.

While studies have identified factors associated with poor response to these drugs such as expression of certain genes, none of the factors has as yet provided doctors with a tool that will help select patients who are likely to respond to the drugs or identify those less likely to respond. Investigators at HSS hoped to remedy this and turned their attention to the type I interferon proteins, specifically a type called interferon beta (IFN-beta). Previous studies have revealed that levels of IFN-beta, a protein that can limit cell division, is present in the joint tissue of some patients with rheumatoid arthritis. The researchers wondered if variable levels of this protein could play a role in how patients respond to TNF-antagonist drugs. To test this hypothesis, the investigators set out to determine the relationship between levels of type I interferon activity in the blood prior to beginning therapy and the ability of the drug to control rheumatoid arthritis in patients. They studied the role of IFN-beta, and because they knew that IFN-beta induces interleukin-1 receptor antagonist (IL-1Ra), another protein, they also tested levels of IL-1Ra.

The study involved three cohorts of patients: patients who had rheumatoid arthritis and received a TNF antagonist (n=35), arthritis patients who received no drug (12), and healthy volunteers (n=50). Patients received their care at the Los Angeles County and University of Southern California Medical Center Rheumatology Clinics. Outcomes were evaluated during a window of therapy consisting of more than three months but fewer than nine months, allowing for sufficient time for clinicians to determine clinical response. Doctors used a tool commonly employed to gauge the severity of arthritis—the Disease Activity Score in 28 joints—to deem whether patients had a moderate, good, or no response to the drug.

The investigators found that patients with higher baseline levels of type I IFN were more likely to respond to therapy with TNF antagonists. Patients who had an increased IFN-beta/alpha ratio, meaning they had more IFN-beta, were also more likely to respond to therapy. They also observed significantly higher baseline levels of IL-1Ra in plasma samples from good responders as compared with those from nonresponders or moderate responders.

"We have drawn attention to a potential biomarker that, if our results are supported by additional future studies in other patient populations, might provide a tool to predict who might be a responder to this class of biologic rheumatoid arthritis therapies, the TNF antagonists, and who might be less likely to be a responder," Dr. Crow said. "For those who demonstrate low levels of blood interferon activity, that information might be useful to guide patients to alternative treatments that might be more likely to work for them." This could include the use of other drugs such as Rituximab, which is not a TNF antagonist.

Dr. Crow was recently named physician-in-chief and chair of the Division of Rheumatology at Hospital for Special Surgery. This appointment is effective as of April 1.

Other authors of the study are Clio P. Mavragani, M.D., at Hospital for Special Surgery, and Dan T. La, M.D., and William Stohl, M.D., Ph.D., at the Los Angeles County and University of Southern California Keck School of Medicine, Los Angeles. Dr. Mavragani's work was supported by a Stavros Niarchos Fellowship from the New York Chapter of the Arthritis Foundation. Dr. Crow's work was supported by a grant from the National Institutes of Health, the Alliance for Lupus Research, the Lupus Research Institute, and the Mary Kirkland Center for Lupus Research at Hospital for Special Surgery.

About Hospital for Special Surgery

Founded in 1863, Hospital for Special Surgery (HSS) is a world leader in orthopedics, rheumatology and rehabilitation. HSS is nationally ranked No. 2 in orthopedics, No. 3 in rheumatology and No. 24 in neurology by U.S. News & World Report (2009), has received Magnet Recognition for Excellence in Nursing Service from the American Nurses Credentialing Center and has one of the lowest infection rates in the country. From 2007 to 2010, HSS has been a recipient of the HealthGrades Joint Replacement Excellence Award. A member of the NewYork-Presbyterian Healthcare System and an affiliate of Weill Cornell Medical College, HSS provides orthopedic and rheumatologic patient care at NewYork-Presbyterian Hospital at New York Weill Cornell Medical Center. All Hospital for Special Surgery medical staff are on the faculty of Weill Cornell Medical College. The hospital's research division is internationally recognized as a leader in the investigation of musculoskeletal and autoimmune diseases. Hospital for Special Surgery is located in New York City and online at www.hss.edu.

For more information contact:
Phyllis Fisher
212-606-1197
FisherP@hss.edu
Tracy Hickenbottom
212-606-1197
HickenbottomT@hss.edu

Phyllis Fisher | EurekAlert!
Further information:
http://www.hss.edu

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>