Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biomarker could help doctors tailor treatment for rheumatoid arthritis

01.02.2010
Investigators have identified a biomarker that could help doctors select patients with rheumatoid arthritis who will benefit from therapy with drugs such as Enbrel, a tumor necrosis factor (TNF)-antagonist drug.

The study, led by researchers at Hospital for Special Surgery in collaboration with rheumatologists at University of Southern California, appears in the February issue of the journal Arthritis & Rheumatism.

"While our study was performed on a relatively small group of patients and will need to be confirmed in a larger cohort, the data are promising and may be clinically significant for the medical management of patients," said Mary K. Crow, M.D., director of Rheumatology Research and co-director of the Mary Kirkland Center for Lupus Research at Hospital for Special Surgery. "Treatment with these drugs is very expensive; the drugs can cost around $16,000 or so per year. If you are going to use them, you would like to know that they are likely to work in your patient." Other well-known TNF-antagonists include Humira and Remicade.

While TNF antagonists have brought relief to thousands of people with rheumatoid arthritis, the drugs are not highly effective in 30 percent to 50 percent of patients. Clinicians thus run the risk of providing a therapy to patients that doesn't work well, is expensive and is potentially toxic. Patients taking TNF antagonists, which have been available for roughly ten years, can run the risk of developing bacterial or fungal infections.

While studies have identified factors associated with poor response to these drugs such as expression of certain genes, none of the factors has as yet provided doctors with a tool that will help select patients who are likely to respond to the drugs or identify those less likely to respond. Investigators at HSS hoped to remedy this and turned their attention to the type I interferon proteins, specifically a type called interferon beta (IFN-beta). Previous studies have revealed that levels of IFN-beta, a protein that can limit cell division, is present in the joint tissue of some patients with rheumatoid arthritis. The researchers wondered if variable levels of this protein could play a role in how patients respond to TNF-antagonist drugs. To test this hypothesis, the investigators set out to determine the relationship between levels of type I interferon activity in the blood prior to beginning therapy and the ability of the drug to control rheumatoid arthritis in patients. They studied the role of IFN-beta, and because they knew that IFN-beta induces interleukin-1 receptor antagonist (IL-1Ra), another protein, they also tested levels of IL-1Ra.

The study involved three cohorts of patients: patients who had rheumatoid arthritis and received a TNF antagonist (n=35), arthritis patients who received no drug (12), and healthy volunteers (n=50). Patients received their care at the Los Angeles County and University of Southern California Medical Center Rheumatology Clinics. Outcomes were evaluated during a window of therapy consisting of more than three months but fewer than nine months, allowing for sufficient time for clinicians to determine clinical response. Doctors used a tool commonly employed to gauge the severity of arthritis—the Disease Activity Score in 28 joints—to deem whether patients had a moderate, good, or no response to the drug.

The investigators found that patients with higher baseline levels of type I IFN were more likely to respond to therapy with TNF antagonists. Patients who had an increased IFN-beta/alpha ratio, meaning they had more IFN-beta, were also more likely to respond to therapy. They also observed significantly higher baseline levels of IL-1Ra in plasma samples from good responders as compared with those from nonresponders or moderate responders.

"We have drawn attention to a potential biomarker that, if our results are supported by additional future studies in other patient populations, might provide a tool to predict who might be a responder to this class of biologic rheumatoid arthritis therapies, the TNF antagonists, and who might be less likely to be a responder," Dr. Crow said. "For those who demonstrate low levels of blood interferon activity, that information might be useful to guide patients to alternative treatments that might be more likely to work for them." This could include the use of other drugs such as Rituximab, which is not a TNF antagonist.

Dr. Crow was recently named physician-in-chief and chair of the Division of Rheumatology at Hospital for Special Surgery. This appointment is effective as of April 1.

Other authors of the study are Clio P. Mavragani, M.D., at Hospital for Special Surgery, and Dan T. La, M.D., and William Stohl, M.D., Ph.D., at the Los Angeles County and University of Southern California Keck School of Medicine, Los Angeles. Dr. Mavragani's work was supported by a Stavros Niarchos Fellowship from the New York Chapter of the Arthritis Foundation. Dr. Crow's work was supported by a grant from the National Institutes of Health, the Alliance for Lupus Research, the Lupus Research Institute, and the Mary Kirkland Center for Lupus Research at Hospital for Special Surgery.

About Hospital for Special Surgery

Founded in 1863, Hospital for Special Surgery (HSS) is a world leader in orthopedics, rheumatology and rehabilitation. HSS is nationally ranked No. 2 in orthopedics, No. 3 in rheumatology and No. 24 in neurology by U.S. News & World Report (2009), has received Magnet Recognition for Excellence in Nursing Service from the American Nurses Credentialing Center and has one of the lowest infection rates in the country. From 2007 to 2010, HSS has been a recipient of the HealthGrades Joint Replacement Excellence Award. A member of the NewYork-Presbyterian Healthcare System and an affiliate of Weill Cornell Medical College, HSS provides orthopedic and rheumatologic patient care at NewYork-Presbyterian Hospital at New York Weill Cornell Medical Center. All Hospital for Special Surgery medical staff are on the faculty of Weill Cornell Medical College. The hospital's research division is internationally recognized as a leader in the investigation of musculoskeletal and autoimmune diseases. Hospital for Special Surgery is located in New York City and online at www.hss.edu.

For more information contact:
Phyllis Fisher
212-606-1197
FisherP@hss.edu
Tracy Hickenbottom
212-606-1197
HickenbottomT@hss.edu

Phyllis Fisher | EurekAlert!
Further information:
http://www.hss.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>