Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Biomarker could help doctors tailor treatment for rheumatoid arthritis

Investigators have identified a biomarker that could help doctors select patients with rheumatoid arthritis who will benefit from therapy with drugs such as Enbrel, a tumor necrosis factor (TNF)-antagonist drug.

The study, led by researchers at Hospital for Special Surgery in collaboration with rheumatologists at University of Southern California, appears in the February issue of the journal Arthritis & Rheumatism.

"While our study was performed on a relatively small group of patients and will need to be confirmed in a larger cohort, the data are promising and may be clinically significant for the medical management of patients," said Mary K. Crow, M.D., director of Rheumatology Research and co-director of the Mary Kirkland Center for Lupus Research at Hospital for Special Surgery. "Treatment with these drugs is very expensive; the drugs can cost around $16,000 or so per year. If you are going to use them, you would like to know that they are likely to work in your patient." Other well-known TNF-antagonists include Humira and Remicade.

While TNF antagonists have brought relief to thousands of people with rheumatoid arthritis, the drugs are not highly effective in 30 percent to 50 percent of patients. Clinicians thus run the risk of providing a therapy to patients that doesn't work well, is expensive and is potentially toxic. Patients taking TNF antagonists, which have been available for roughly ten years, can run the risk of developing bacterial or fungal infections.

While studies have identified factors associated with poor response to these drugs such as expression of certain genes, none of the factors has as yet provided doctors with a tool that will help select patients who are likely to respond to the drugs or identify those less likely to respond. Investigators at HSS hoped to remedy this and turned their attention to the type I interferon proteins, specifically a type called interferon beta (IFN-beta). Previous studies have revealed that levels of IFN-beta, a protein that can limit cell division, is present in the joint tissue of some patients with rheumatoid arthritis. The researchers wondered if variable levels of this protein could play a role in how patients respond to TNF-antagonist drugs. To test this hypothesis, the investigators set out to determine the relationship between levels of type I interferon activity in the blood prior to beginning therapy and the ability of the drug to control rheumatoid arthritis in patients. They studied the role of IFN-beta, and because they knew that IFN-beta induces interleukin-1 receptor antagonist (IL-1Ra), another protein, they also tested levels of IL-1Ra.

The study involved three cohorts of patients: patients who had rheumatoid arthritis and received a TNF antagonist (n=35), arthritis patients who received no drug (12), and healthy volunteers (n=50). Patients received their care at the Los Angeles County and University of Southern California Medical Center Rheumatology Clinics. Outcomes were evaluated during a window of therapy consisting of more than three months but fewer than nine months, allowing for sufficient time for clinicians to determine clinical response. Doctors used a tool commonly employed to gauge the severity of arthritis—the Disease Activity Score in 28 joints—to deem whether patients had a moderate, good, or no response to the drug.

The investigators found that patients with higher baseline levels of type I IFN were more likely to respond to therapy with TNF antagonists. Patients who had an increased IFN-beta/alpha ratio, meaning they had more IFN-beta, were also more likely to respond to therapy. They also observed significantly higher baseline levels of IL-1Ra in plasma samples from good responders as compared with those from nonresponders or moderate responders.

"We have drawn attention to a potential biomarker that, if our results are supported by additional future studies in other patient populations, might provide a tool to predict who might be a responder to this class of biologic rheumatoid arthritis therapies, the TNF antagonists, and who might be less likely to be a responder," Dr. Crow said. "For those who demonstrate low levels of blood interferon activity, that information might be useful to guide patients to alternative treatments that might be more likely to work for them." This could include the use of other drugs such as Rituximab, which is not a TNF antagonist.

Dr. Crow was recently named physician-in-chief and chair of the Division of Rheumatology at Hospital for Special Surgery. This appointment is effective as of April 1.

Other authors of the study are Clio P. Mavragani, M.D., at Hospital for Special Surgery, and Dan T. La, M.D., and William Stohl, M.D., Ph.D., at the Los Angeles County and University of Southern California Keck School of Medicine, Los Angeles. Dr. Mavragani's work was supported by a Stavros Niarchos Fellowship from the New York Chapter of the Arthritis Foundation. Dr. Crow's work was supported by a grant from the National Institutes of Health, the Alliance for Lupus Research, the Lupus Research Institute, and the Mary Kirkland Center for Lupus Research at Hospital for Special Surgery.

About Hospital for Special Surgery

Founded in 1863, Hospital for Special Surgery (HSS) is a world leader in orthopedics, rheumatology and rehabilitation. HSS is nationally ranked No. 2 in orthopedics, No. 3 in rheumatology and No. 24 in neurology by U.S. News & World Report (2009), has received Magnet Recognition for Excellence in Nursing Service from the American Nurses Credentialing Center and has one of the lowest infection rates in the country. From 2007 to 2010, HSS has been a recipient of the HealthGrades Joint Replacement Excellence Award. A member of the NewYork-Presbyterian Healthcare System and an affiliate of Weill Cornell Medical College, HSS provides orthopedic and rheumatologic patient care at NewYork-Presbyterian Hospital at New York Weill Cornell Medical Center. All Hospital for Special Surgery medical staff are on the faculty of Weill Cornell Medical College. The hospital's research division is internationally recognized as a leader in the investigation of musculoskeletal and autoimmune diseases. Hospital for Special Surgery is located in New York City and online at

For more information contact:
Phyllis Fisher
Tracy Hickenbottom

Phyllis Fisher | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>