Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biology trumps chemistry in open ocean

25.11.2014

New framework advances understanding of phytoplankton nutrient assimilation

Single-cell phytoplankton in the ocean are responsible for roughly half of global oxygen production, despite vast tracts of the open ocean that are devoid of life-sustaining nutrients.

While phytoplankton's ability to adjust their physiology to exploit limited nutrients in the open ocean has been well documented, little is understood about how variations in microbial biodiversity -- the number and variety of marine microbes - affects global ocean function.

In a paper published in PNAS on Monday November 24, scientists laid out a robust new framework based on in situ observations that will allow scientists to describe and understand how phytoplankton assimilate limited concentrations of phosphorus, a key nutrient, in the ocean in ways that better reflect what is actually occurring in the marine environment.

This is an important advance because nutrient uptake is a central property of ocean biogeochemistry, and in many regions controls carbon dioxide fixation, which ultimately can play a role in mitigating climate change.

"Until now, our understanding of how phytoplankton assimilate nutrients in an extremely nutrient-limited environment was based on lab cultures that poorly represented what happens in natural populations," explained Michael Lomas of Bigelow Laboratory for Ocean Sciences, who co-led the study with Adam Martiny of University of California - Irvine, and Simon Levin and Juan Bonachela of Princeton University.

"Now we can quantify how phytoplankton are taking up nutrients in the real world, which provides much more meaningful data that will ultimately improve our understanding of their role in global ocean function and climate regulation."

To address the knowledge gap about the globally-relevant ecosystem process of nutrient uptake, researchers worked to identify how different levels of microbial biodiversity influenced in situ phosphorus uptake in the Western Subtropical North Atlantic Ocean. Specifically, they focused on how different phytoplankton taxa assimilated phosphorus in the same region, and how phosphorus uptake by those individual taxa varied across regions with different phosphorus concentrations.

They found that phytoplankton were much more efficient at assimilating vanishingly low phosphorus concentrations than would have been predicted from culture research. Moreover, individual phytoplankton continually optimized their ability to assimilate phosphorus as environmental phosphorus concentrations increased. This finding runs counter to the commonly held, and widely used, view that their ability to assimilate phosphorus saturates as concentrations increase.

"Prior climate models didn't take into account how natural phytoplankton populations vary in their ability to take up key nutrients, "said Martiny. "We were able to fill in this gap through fieldwork and advanced analytical techniques. The outcome is the first comprehensive in situ quantification of nutrient uptake capabilities among dominant phytoplankton groups in the North Atlantic Ocean that takes into account microbial biodiversity. "

Bigelow Laboratory for Ocean Sciences, an independent not-for-profit research institution on the coast of Maine, conducts research ranging from microbial oceanography to large-scale ocean processes that affect the global environment. Recognized as a leader in Maine's emerging innovation economy, the Laboratory's research, education, and technology transfer programs are spurring significant economic growth in the state.

Darlene Crist | EurekAlert!
Further information:
http://www.bigelow.org/

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>