Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Biology Made Simpler With "Clear" Tissues


In general, our knowledge of biology—and much of science in general—is limited by our ability to actually see things. Researchers who study developmental problems and disease, in particular, are often limited by their inability to look inside an organism to figure out exactly what went wrong and when.

Now, thanks to techniques developed at Caltech, scientists can see through tissues, organs, and even an entire body. The techniques offer new insight into the cell-by-cell makeup of organisms—and the promise of novel diagnostic medical applications.

"Large volumes of tissue are not optically transparent—you can't see through them," says Viviana Gradinaru (BS '05), an assistant professor of biology at Caltech and the principal investigator whose team has developed the new techniques, which are explained in a paper appearing in the journal Cell.

Lipids throughout cells provide structural support, but they also prevent light from passing through the cells. "So, if we need to see individual cells within a large volume of tissue"—within a mouse kidney, for example, or a human tumor biopsy—"we have to slice the tissue very thin, separately image each slice with a microscope, and put all of the images back together with a computer. It's a very time-consuming process and it is error prone, especially if you look to map long axons or sparse cell populations such as stem cells or tumor cells," she says.

The researchers came up with a way to circumvent this long process by making an organism's entire body clear, so that it can be peered through—in 3-D—using standard optical methods such as confocal microscopy.

The new approach builds off a technique known as CLARITY that was previously developed by Gradinaru and her collaborators to create a transparent whole-brain specimen. With the CLARITY method, a rodent brain is infused with a solution of lipid-dissolving detergents and hydrogel—a water-based polymer gel that provides structural support—thus "clearing" the tissue but leaving its three-dimensional architecture intact for study.

The refined technique optimizes the CLARITY concept so that it can be used to clear other organs besides the brain, and even whole organisms. By making clever use of an organism's own network of blood vessels, Gradinaru and her colleagues—including scientific researcher Bin Yang and postdoctoral scholar Jennifer Treweek, coauthors on the paper—can quickly deliver the lipid-dissolving hydrogel and chemical solution throughout the body.

Gradinaru and her colleagues have dubbed this new technique PARS, or perfusion-assisted agent release in situ.

Once an organ or whole body has been made transparent, standard microscopy techniques can be used to easily look through a thick mass of tissue to view single cells that are genetically marked with fluorescent proteins. Even without such genetically introduced fluorescent proteins, however, the PARS technique can be used to deliver stains and dyes to individual cell types of interest. When whole-body clearing is not necessary the method works just as well on individual organs by using a technique called PACT, short for passive clarity technique.

To find out if stripping the lipids from cells also removes other potential molecules of interest—such as proteins, DNA, and RNA—Gradinaru and her team collaborated with Long Cai, an assistant professor of chemistry at Caltech, and his lab. The two groups found that strands of RNA are indeed still present and can be detected with single-molecule resolution in the cells of the transparent organisms.

The Cell paper focuses on the use of PACT and PARS as research tools for studying disease and development in research organisms. However, Gradinaru and her UCLA collaborator Rajan Kulkarni, have already found a diagnostic medical application for the methods. Using the techniques on a biopsy from a human skin tumor, the researchers were able to view the distribution of individual tumor cells within a tissue mass. In the future, Gradinaru says, the methods could be used in the clinic for the rapid detection of cancer cells in biopsy samples.

The ability to make an entire organism transparent while retaining its structural and genetic integrity has broad-ranging applications, Gradinaru says. For example, the neurons of the peripheral nervous system could be mapped throughout a whole body, as could the distribution of viruses, such as HIV, in an animal model.

Gradinaru also leads Caltech's Beckman Institute BIONIC center for optogenetics and tissue clearing and plans to offer training sessions to researchers interested in learning how to use PACT and PARS in their own labs.

"I think these new techniques are very practical for many fields in biology," she says. "When you can just look through an organism for the exact cells or fine axons you want to see—without slicing and realigning individual sections—it frees up the time of the researcher. That means there is more time to the answer big questions, rather than spending time on menial jobs."

Written by Jessica Stoller-Conrad

A 3-D visualization of fluorescently-labeled brain cells within an intact brain tissue. Through the use of this novel whole-body clearing and staining method, researchers can make an organism’s tissues transparent—allowing them to look through the tissues of an organism for specific cells that have been labeled or stained.Credit: Bin Yang and Viviana Gradinaru/Caltech

Deborah Williams-Hedges | Eurek Alert!
Further information:

Further reports about: BIONIC Caltech DNA HIV UCLA biopsy blood proteins skin

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>