Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biology of flushing could renew niacin as cholesterol drug

08.04.2009
Deft molecular detective work at Duke University Medical Center suggests that scientists may soon be able to resurrect niacin as one of the best and cheapest ways to manage cholesterol.

Niacin, also known as nicotinic acid or vitamin B3, has long been regarded as one of the most effective weapons in managing cholesterol. It can lower levels of triglycerides, fatty acids and to a lesser extent, the "bad" kind of cholesterol (LDL) while at the same time powerfully increasing the "good" kind (HDL).

But there's a catch – a big one. Patients don't like to take niacin because in most of them, it causes embarrassing, uncontrollable intense flushing, a rush of blood to the face and other skin surfaces accompanied by a prickling sensation.

Now, however, scientists have identified the discrete molecular pathways that are triggered when niacin enters the body, and they say that knowledge may lead to a revival of niacin-based treatments as therapies of choice. Their discovery appears online in the Journal of Clinical Investigation and is scheduled to appear in the journal's May 1 issue.

"This opens up whole new realms for drug discovery," says Robert Walters, M.D., a dermatologist at Duke and the lead author of the study. "Not only could it lead to new niacin-based therapies for cholesterol that patients could actually stick with, but it could also mean new treatments for flushing that comes with some types of allergic reactions, hives and other disorders."

The discovery builds upon a growing body of knowledge at Duke about G protein coupled receptors, molecules that dot cell surfaces throughout the body and manage its response to drugs, hormones, pain, growth factors and many other incoming chemical signals. Robert Lefkowitz, M.D., a Howard Hughes Medical Institute investigator at Duke and the senior author of the study, was the first to identify these receptors and some of the roles they play in health and well-being.

Working together, Lefkowitz and Walters conducted various laboratory and animal experiments to track exactly what happens when niacin enters the body. Earlier, others had found that it first activates a specific G protein coupled receptor known as GP109A. This receptor, in turn, alerts other sets of proteins, including G proteins and a group referred to as beta-arrestins. One particular protein in that group, beta-arrestin1, was found to trigger the chemical reaction that led to flushing.

"Niacin stimulates production of a vasodilator that dramatically increases blood flow to the face, causing the flush and the hot, prickly sensation – and beta-arrestin1 is the culprit that enables that to happen," says Walters. "Interestingly, however, beta-arrestin1 plays no role whatsoever in niacin's ability to lower cholesterol and fatty acids. The G proteins do that."

The finding reinforces some of Lefkowitz's recent research that demonstrated that beta-arrestins, which often work in tandem with G proteins, can sometimes work independently of them, initiating their own signals.

Lefkowitz says the discovery opens the door to the possibility of developing a "biased ligand," a drug that would trigger GP109A, but not the beta-arrestins. "That might give us a way to keep all the lipid-modifying benefits of niacin, but isolate its downside," he said.

That might not be as simple as it sounds, however. Other studies suggest that enhancing niacin's ability to boost HDL may be more complex than what appears at, well, first blush.

"GPR109A receptors are most often found in fat, the spleen , adrenal glands and lungs – they are absent from the liver and intestines, where most HDL is made and metabolized, so there may well be other mechanisms of action for the beneficial effects of niacin in addition to those performed by GPR109A," says Lefkowitz.

Lefkowitz is a scientific founder of Trevena, a company that is developing G protein coupled receptor-targeted drugs.

The study was funded by the National Institutes of Health, the Howard Hughes Medical Institute and a Dermatology Foundation Physician Scientists Career Development Award to Dr. Walters.

Colleagues from Duke who contributed to the study include Arun Shukla, Jeffrey Kovacs, Christopher Lam and Erin Whalen, from the department of medicine, Jonathan Violin, from the department of biochemistry, Scott DeWire and J. Ruthie Chen, from the Howard Hughes Medical Institute and Michael Muehlbauer, from the Sarah W. Stedman Nutrition and Metabolism Center.

Michelle Gailiun | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>