Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Biology of flushing could renew niacin as cholesterol drug

Deft molecular detective work at Duke University Medical Center suggests that scientists may soon be able to resurrect niacin as one of the best and cheapest ways to manage cholesterol.

Niacin, also known as nicotinic acid or vitamin B3, has long been regarded as one of the most effective weapons in managing cholesterol. It can lower levels of triglycerides, fatty acids and to a lesser extent, the "bad" kind of cholesterol (LDL) while at the same time powerfully increasing the "good" kind (HDL).

But there's a catch – a big one. Patients don't like to take niacin because in most of them, it causes embarrassing, uncontrollable intense flushing, a rush of blood to the face and other skin surfaces accompanied by a prickling sensation.

Now, however, scientists have identified the discrete molecular pathways that are triggered when niacin enters the body, and they say that knowledge may lead to a revival of niacin-based treatments as therapies of choice. Their discovery appears online in the Journal of Clinical Investigation and is scheduled to appear in the journal's May 1 issue.

"This opens up whole new realms for drug discovery," says Robert Walters, M.D., a dermatologist at Duke and the lead author of the study. "Not only could it lead to new niacin-based therapies for cholesterol that patients could actually stick with, but it could also mean new treatments for flushing that comes with some types of allergic reactions, hives and other disorders."

The discovery builds upon a growing body of knowledge at Duke about G protein coupled receptors, molecules that dot cell surfaces throughout the body and manage its response to drugs, hormones, pain, growth factors and many other incoming chemical signals. Robert Lefkowitz, M.D., a Howard Hughes Medical Institute investigator at Duke and the senior author of the study, was the first to identify these receptors and some of the roles they play in health and well-being.

Working together, Lefkowitz and Walters conducted various laboratory and animal experiments to track exactly what happens when niacin enters the body. Earlier, others had found that it first activates a specific G protein coupled receptor known as GP109A. This receptor, in turn, alerts other sets of proteins, including G proteins and a group referred to as beta-arrestins. One particular protein in that group, beta-arrestin1, was found to trigger the chemical reaction that led to flushing.

"Niacin stimulates production of a vasodilator that dramatically increases blood flow to the face, causing the flush and the hot, prickly sensation – and beta-arrestin1 is the culprit that enables that to happen," says Walters. "Interestingly, however, beta-arrestin1 plays no role whatsoever in niacin's ability to lower cholesterol and fatty acids. The G proteins do that."

The finding reinforces some of Lefkowitz's recent research that demonstrated that beta-arrestins, which often work in tandem with G proteins, can sometimes work independently of them, initiating their own signals.

Lefkowitz says the discovery opens the door to the possibility of developing a "biased ligand," a drug that would trigger GP109A, but not the beta-arrestins. "That might give us a way to keep all the lipid-modifying benefits of niacin, but isolate its downside," he said.

That might not be as simple as it sounds, however. Other studies suggest that enhancing niacin's ability to boost HDL may be more complex than what appears at, well, first blush.

"GPR109A receptors are most often found in fat, the spleen , adrenal glands and lungs – they are absent from the liver and intestines, where most HDL is made and metabolized, so there may well be other mechanisms of action for the beneficial effects of niacin in addition to those performed by GPR109A," says Lefkowitz.

Lefkowitz is a scientific founder of Trevena, a company that is developing G protein coupled receptor-targeted drugs.

The study was funded by the National Institutes of Health, the Howard Hughes Medical Institute and a Dermatology Foundation Physician Scientists Career Development Award to Dr. Walters.

Colleagues from Duke who contributed to the study include Arun Shukla, Jeffrey Kovacs, Christopher Lam and Erin Whalen, from the department of medicine, Jonathan Violin, from the department of biochemistry, Scott DeWire and J. Ruthie Chen, from the Howard Hughes Medical Institute and Michael Muehlbauer, from the Sarah W. Stedman Nutrition and Metabolism Center.

Michelle Gailiun | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>