Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologists Unlock Non-Coding Half Of Human Genome With Novel Sequencing Technique

08.10.2014

An obscure swatch of human DNA once thought to be nothing more than biological trash may actually offer a treasure trove of insight into complex genetic-related diseases such as cancer and diabetes, thanks to a novel sequencing technique developed by biologists at Texas A&M University.

The game-changing discovery was part of a study led by Texas A&M biology doctoral candidate John C. Aldrich and Dr. Keith A. Maggert, an associate professor in the Department of Biology, to measure variation in heterochromatin. This mysterious, tightly packed section of the vast, non-coding section of the human genome, widely dismissed by geneticists as "junk," previously was thought by scientists to have no discernable function at all.

In the course of his otherwise routine analysis of DNA in fruit flies, Aldrich was able to monitor dynamics of the heterochromatic sequence by modifying a technique called quantitative polymerase chain reaction (QPCR), a process used to amplify specific DNA sequences from a relatively small amount of starting material. He then added a fluorescent dye, allowing him to monitor the fruit-fly DNA changes and to observe any variations.

Aldrich's findings, published today in the online edition of the journal PLOS ONE, showed that differences in the heterochromatin exist, confirming that the junk DNA is not stagnant as researchers originally had believed and that mutations which could affect other parts of the genome are capable of occurring.

"We know that there is hidden variation there, like disease proclivities or things that are evolutionarily important, but we never knew how to study it," Maggert said. "We couldn't even do the simplest things because we didn't know if there was a little DNA or a lot of it.

"This work opens up the other non-coding half of the genome."

Maggert explains that chromosomes are located in the nuclei of all human cells, and the DNA material in these chromosomes is made up of coding and non-coding regions. The coding regions, known as genes, contain the information necessary for a cell to make proteins, but far less is known about the non-coding regions, beyond the fact that they are not directly related to making proteins.

"Believe it or not, people still get into arguments over the definition of a gene," Maggert said. "In my opinion, there are about 30,000 protein-coding genes. The rest of the DNA -- greater than 90 percent -- either controls those genes and therefore is technically part of them, or is within this mush that we study and, thanks to John, can now measure. The heterochromatin that we study definitely has effects, but it's not possible to think of it as discrete genes. So, we prefer to think of it as 30,000 protein-coding genes plus this one big, complex one that can orchestrate the other 30,000."

Although other methods of measuring DNA are technically available, Aldrich notes that, as of yet, none has proven to be as cost-effective nor time-efficient as his modified-QPCR-fluorescence technique.

"There's some sequencing technology that can also be used to do this, but it costs tens of thousands of dollars," Aldrich said. "This enables us to answer a very specific question right here in the lab."

The uncharted genome sequences have been a point of contention in scientific circles for more than a decade, according to Maggert, a Texas A&M faculty member since 2004. It had long been believed that the human genome -- the blueprint for humanity, individually and as a whole -- would be packed with complex genes with the potential to answer some of the most pressing questions in medical biology.

When human DNA was finally sequenced with the completion of the Human Genome Project in 2003, he says that perception changed. Based on those initial reports, researchers determined that only two percent of the genome (about 21,000 genes) represented coding DNA. Since then, numerous other studies have emerged debating the functionality, or lack thereof, of non-coding, so-called "junk DNA."

Now, thanks to Aldrich's and Maggert's investigation of heterochromatin, the groundwork has been laid to study the rest of the genome. Once all of it is understood, scientists may finally find the root causes and possibly treatments for many genetic ailments.

"There is so much talk about understanding the connection between genetics and disease and finding personalized therapies," Maggert said. "However, this topic is incomplete unless biologists can look at the entire genome. We still can't -- yet -- but at least now, we're a step closer."

###

About Research at Texas A&M University: As one of the world's leading research institutions, Texas A&M is in the vanguard in making significant contributions to the storehouse of knowledge, including that of science and technology. Research conducted at Texas A&M represents annual expenditures of more than $820 million. That research creates new knowledge that provides basic, fundamental and applied contributions resulting in many cases in economic benefits to the state, nation and world. To learn more, visit http://research.tamu.edu.

Contact Information

Chris Jarvis, (979) 845-7246 or

cjarvis@science.tamu.edu

or Dr. Keith A. Maggert, (979) 845-6610

or kmaggert@bio.tamu.edu

Chris Jarvis | newswise

More articles from Life Sciences:

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Cells adapt ultra-rapidly to zero gravity

28.02.2017 | Health and Medicine

An Atom Trap for Water Dating

28.02.2017 | Earth Sciences

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>