Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologists take snapshot of fleeting protein process

31.05.2013
Rice, BCM crystallographers capture elusive actin nucleation process

Structural biologists from Rice University and Baylor College of Medicine (BCM) have captured the first three-dimensional crystalline snapshot of a critical but fleeting process that takes place thousands of times per second in each human cell. The research appears online today in the journal Cell Reports and could prove useful in the study of cancer and other diseases.


To decipher the structure of the F-actin nucleus, researchers used a dual-mutant strategy. They created two mutant versions of actin monomers that could bind together to form a nucleus but could not bind with additional monomers to form the F-actin polymer chain.

Credit: J. Ma/Rice University

The biological "freeze-frame" shows the initial step in the formation of actin, a sturdy strand-like filament that is vital for humans. Actin filaments help cells maintain their shape. The filaments, which are called F-actin, also play key roles in muscle contraction, cell division and other critical processes.

"One of the major distinctions between cancerous cells and healthy cells is their shape," said study co-author Jianpeng Ma, professor of bioengineering at Rice and the Lodwick T. Bolin Professor of Biochemistry at BCM. "There is a correlation between healthy shape and well-regulated cell growth, and cancer cells are often ugly and ill-shaped compared to healthy cells."

F-actin was discovered in 1887, but despite the more than 18,000 actin-related studies in scientific literature, biologists have struggled to unlock some of its secrets. For example, F-actin is a polymer made of many smaller proteins called monomers. These building blocks, which are called G-actin, self-assemble end to end to form F-actin. But the self-assembly process is so efficient that scientists have been unable to see what happens when the first two or three monomers come together to form the nucleus of a filament. The F-actin filaments inside cells are constantly being built, torn apart and rebuilt.

"Nucleation is critical for this continual building and rebuilding," said BCM biochemist and study co-author Qinghua Wang. "For healthy cells, nucleation is the starting place for robust shape. For unhealthy cells, like cancer, nucleation processes may play a crucial role in unregulated growth. That's one reason we want to better understand nucleation."

In 2008, Ma and Wang asked Xiaorui Chen, a graduate student in BCM's Structural and Computational Biology and Molecular Biophysics program, to undertake the task of using x-ray crystallography to determine the structure of the actin nucleus. Her initial attempts failed, but the team finally hit upon the winning idea of creating two mutant versions of G-actin that could nucleate but not polymerize.

Native G-actin binds with one neighbor on top and one on bottom, and this top-bottom, end-to-end binding pattern is the key to forming long F-actin polymers. To foster nucleation without polymerization, Chen created two mutant versions of G-actin. One mutant could bind normally on top but not on bottom, and the other could bind normally on bottom but not on top.

"This dual-mutant strategy was the key," said Chen, who is now a postdoctoral researcher at BCM. "After that, we had to overcome problems related to forming and growing the crystal samples needed for crystallography."

Chen used a two-stage process to prepare the crystals. She first used high levels of super-saturation to spur initial crystal formation and then used a process called seeding to transfer the newly formed crystals to another medium where they could grow large enough for examination.

Once the crystals were prepared, they were analyzed with x-ray diffraction, which revealed the atomic arrangement of each atom in the nucleated, dual-mutant pair. "We believe this dual-mutant arrangement reveals the most critical contacts involved in nucleation," Ma said. "For the first time, we are able to see how actin nucleation begins."

Additional co-authors include Fengyun Ni of both Rice and BCM, Xia Tian of BCM and Elena Kondrashkina of Northwestern University. The research was supported by the National Institutes of Health, the Gillson-Longenbaugh Foundation, the National Science Foundation, the Welch Foundation, the Department of Energy and the Michigan Economic Development Corp.

A copy of the Cell Reports article is available at: http://www.cell.com/cell-reports/fulltext/S2211-1247(13)00210-6

Follow Rice News and Media Relations via Twitter @RiceUNews

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/AboutRiceU.

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>