Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologists Reprogram Skin Cells to Mimic Rare Disease

22.08.2014

Additional tool accelerates personalized medicine research

Johns Hopkins stem cell biologists have found a way to reprogram a patient’s skin cells into cells that mimic and display many biological features of a rare genetic disorder called familial dysautonomia.


courtesy Cell Press

Neural crest cells were made from reprogrammed adult skin cells. A single neural crest cell divided many times and these cells (green) were coaxed to become four different types of adult cells, as shown by the presence of cell-specific proteins (red). Clockwise from upper left corner: nerve cells, smooth muscle cells, pigment-producing skin cells and cells that protect and support nerve cells.

The process requires growing the skin cells in a bath of proteins and chemical additives while turning on a gene to produce neural crest cells, which give rise to several adult cell types.

The researchers say their work substantially expedites the creation of neural crest cells from any patient with a neural crest-related disorder, a tool that lets physicians and scientists study each patient’s disorder at the cellular level.

... more about:
»Biologists »Cells »Disease »Medicine »Stem »disorders »neural »skin »stem cells

Previously, the same research team produced customized neural crest cells by first reprogramming patient skin cells into induced pluripotent stem (iPS) cells, which are similar to embryonic stem cells in their ability to become any of a broad array of cell types.

“Now we can circumvent the iPS cells step, saving seven to nine months of time and labor and producing neural crest cells that are more similar to the familial dysautonomia patients’ cells,” says Gabsang Lee, Ph.D., an assistant professor of neurology at the Institute for Cell Engineering and the study’s senior author. A summary of the study will be published online in the journal Cell Stem Cell on Aug. 21.

Neural crest cells appear early in human and other animal prenatal development, and they give rise to many important structures, including most of the nervous system (apart from the brain and spinal cord), the bones of the skull and jaws, and pigment-producing skin cells.

Dysfunctional neural crest cells cause familial dysautonomia, which is incurable and can affect nerves’ ability to regulate emotions, blood pressure and bowel movements. Less than 500 patients worldwide suffer from familial dysautonomia, but dysfunctional neural crest cells can cause other disorders, such as facial malformations and an inability to feel pain.

The challenge for scientists has been the fact that by the time a person is born, very few neural crest cells remain, making it hard to study how they cause the various disorders.

To make patient-specific neural crest cells, the team began with laboratory-grown skin cells that had been genetically modified to respond to the presence of the chemical doxycycline by glowing green and turning on the gene Sox10, which guides cells toward maturation as a neural crest cell.

Testing various combinations of molecular signals and watching for telltale green cells, the team found a regimen that turned 2 percent of the cells green. That combination involved turning on Sox10 while growing the cells on a layer of two different proteins and giving them three chemical additives to “rewind” their genetic memory and stimulate a protein network important for development.

Analyzing the green cells at the single cell level, the researchers found that they showed gene activity similar to that of other neural crest cells. Moreover, they discovered that 40 percent were “quad-potent,” or able to become the four cell types typically derived from neural crest cells, while 35 percent were “tri-potent” and could become three of the four. The cells also migrated to the appropriate locations in chick embryos when implanted early in development.

The team then applied a modified version of the technique to skin cells from healthy adults and found that the skin cells became neural crests at a rate similar to the team’s previous experiments.

Finally, the investigators used their regimen on skin cells from patients with familial dysautonomia, then compared these familial dysautonomia-neural crest cells to the control neural crest cells made from healthy adults. They identified 412 genes with lower activity levels in the familial dysautonomia-neural crest cells, of which 98 are involved in processing RNA products made from active genes.

According to the authors, this new observation offers insight into what goes wrong in familial dysautonomia.

“It seems as though the neural crest cells created directly from patient skin cells show more of the characteristics of familial dysautonomia than the neural crest cells we created previously from induced pluripotent stem cells,” says Lee. “That means they should be better predictors of what happens in a particular familial dysautonomia patient, and whether or not a potential treatment will work for any given individual.”

The method they devised should also be applicable to skin cells taken from people with any of the other diseases that result from dysfunctional neural crest cells, such as congenital pain disorders and Charcot-Marie-Tooth diseases, Lee says.

Other authors of the report include Yong Jun Kim, HoTae Lim, Zhe Li, Yohan Oh, Irina Kovlyagina, InYoung Choi and Xinzhong Dong of the Johns Hopkins University School of Medicine.

This work was supported by grants from the New York Stem Cell Foundation (Robertson Investigator Award) and the Maryland Stem Cell Research Fund (TEDCO).

On the Web:

Link to article (live after embargo lifts): http://dx.doi.org/10.1016/j.stem.2014.07.013

Lee Profile

Contact Information

Catherine Kolf
Senior Communications Specialist
ckolf@jhmi.edu
Phone: 443-287-2251
Mobile: 443-440-1929

Catherine Kolf | newswise

Further reports about: Biologists Cells Disease Medicine Stem disorders neural skin stem cells

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>