Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologists Pinpoint a Genetic Change That Helps Tumors Move to Other Parts of the Body

07.04.2011
MIT cancer biologists have identified a genetic change that makes lung tumors more likely to spread to other parts of the body. The findings, to be published in the April 6 online issue of Nature, offers new insight into how lung cancers metastasize and could help identify drug targets to combat metastatic tumors, which account for 90 percent of cancer deaths.

The researchers, led by Tyler Jacks, director of the David H. Koch Institute for Integrative Cancer Research at MIT, found the alteration while studying a mouse model of lung cancer. They then compared their mouse data to genetic profiles of human lung tumors and found that reduced activity of the same gene, NKX2-1, is associated with higher death rates for lung-cancer patients.

This study represents an important step in understanding how changes that disable this gene would make tumors more aggressive, says Monte Winslow, a senior postdoctoral associate in Jacks’ lab and lead author of a paper.

Understanding the role of NKX2-1 may help scientists pursue drugs that could counteract its loss. Right now, “the sad reality is that if you could tell a patient whether their cancer has turned down this gene, you would know they will have a worse outcome, but it wouldn’t change the treatment,” Winslow says.

Winslow and his colleagues at the Koch Institute studied mice that are genetically programmed to develop lung tumors. The mice’s lung cells can be induced to express an activated form of the cancer-causing gene Kras, and the tumor suppressor gene p53 is deleted. While all of those mice develop lung tumors, only a subset of those tumors metastasizes, suggesting that additional changes are required for the cancer to spread.

The researchers analyzed the genomes of metastatic and non-metastatic tumors in hopes of finding some genetic differences that would account for the discrepancy. The absence of NKX2-1 activity in metastatic tumors was the most striking difference, Winslow says.

The NKX2-1 gene codes for a transcription factor — a protein that controls expression of other genes. Its normal function is to control development of the lung, as well as the thyroid and some parts of the brain. When cancerous cells turn down the expression of the gene, they appear to revert to an immature state and gain the ability to detach from the lungs and spread through the body, seeding new tumors.

Once the researchers identified NKX2-1 as a gene important to metastasis, they started to look into the effects of the genes that it regulates. They zeroed in on a gene called HMGA2, which had been previously implicated in other types of cancer. It appears that NKX2-1 represses HMGA2 in adult tissues. When NKX2-1 is shut off in cancer cells, HMGA2 turns back on and helps the tumor to become more aggressive.

They also found that human tumors with NKX2-1 missing and HMGA turned on tended to be metastatic, though not all metastatic tumors fit that profile.

It would be difficult to target NKX2-1 with a drug because it’s much harder to develop drugs that turn a gene back on than shut it off, Winslow noted. A more promising possibility is targeting HMGA2 or other genes that NKX2-1 represses.

Jacks’ lab is now looking at other types of cancer, to see if NKX2-1 or HMGA2 have the same role in other metastatic cancers. “It’s great to find something that’s important in lung cancer metastasis, but it would be even better if it controlled metastasis in even a subset of other cancer types,” Winslow says.

Patti Richards | Newswise Science News
Further information:
http://www.mit.edu

Further reports about: Genetic clues HMGA2 NKX2-1 death rate lung cancer metastatic tumors

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>