Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Biologists Pinpoint a Genetic Change That Helps Tumors Move to Other Parts of the Body

MIT cancer biologists have identified a genetic change that makes lung tumors more likely to spread to other parts of the body. The findings, to be published in the April 6 online issue of Nature, offers new insight into how lung cancers metastasize and could help identify drug targets to combat metastatic tumors, which account for 90 percent of cancer deaths.

The researchers, led by Tyler Jacks, director of the David H. Koch Institute for Integrative Cancer Research at MIT, found the alteration while studying a mouse model of lung cancer. They then compared their mouse data to genetic profiles of human lung tumors and found that reduced activity of the same gene, NKX2-1, is associated with higher death rates for lung-cancer patients.

This study represents an important step in understanding how changes that disable this gene would make tumors more aggressive, says Monte Winslow, a senior postdoctoral associate in Jacks’ lab and lead author of a paper.

Understanding the role of NKX2-1 may help scientists pursue drugs that could counteract its loss. Right now, “the sad reality is that if you could tell a patient whether their cancer has turned down this gene, you would know they will have a worse outcome, but it wouldn’t change the treatment,” Winslow says.

Winslow and his colleagues at the Koch Institute studied mice that are genetically programmed to develop lung tumors. The mice’s lung cells can be induced to express an activated form of the cancer-causing gene Kras, and the tumor suppressor gene p53 is deleted. While all of those mice develop lung tumors, only a subset of those tumors metastasizes, suggesting that additional changes are required for the cancer to spread.

The researchers analyzed the genomes of metastatic and non-metastatic tumors in hopes of finding some genetic differences that would account for the discrepancy. The absence of NKX2-1 activity in metastatic tumors was the most striking difference, Winslow says.

The NKX2-1 gene codes for a transcription factor — a protein that controls expression of other genes. Its normal function is to control development of the lung, as well as the thyroid and some parts of the brain. When cancerous cells turn down the expression of the gene, they appear to revert to an immature state and gain the ability to detach from the lungs and spread through the body, seeding new tumors.

Once the researchers identified NKX2-1 as a gene important to metastasis, they started to look into the effects of the genes that it regulates. They zeroed in on a gene called HMGA2, which had been previously implicated in other types of cancer. It appears that NKX2-1 represses HMGA2 in adult tissues. When NKX2-1 is shut off in cancer cells, HMGA2 turns back on and helps the tumor to become more aggressive.

They also found that human tumors with NKX2-1 missing and HMGA turned on tended to be metastatic, though not all metastatic tumors fit that profile.

It would be difficult to target NKX2-1 with a drug because it’s much harder to develop drugs that turn a gene back on than shut it off, Winslow noted. A more promising possibility is targeting HMGA2 or other genes that NKX2-1 represses.

Jacks’ lab is now looking at other types of cancer, to see if NKX2-1 or HMGA2 have the same role in other metastatic cancers. “It’s great to find something that’s important in lung cancer metastasis, but it would be even better if it controlled metastasis in even a subset of other cancer types,” Winslow says.

Patti Richards | Newswise Science News
Further information:

Further reports about: Genetic clues HMGA2 NKX2-1 death rate lung cancer metastatic tumors

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>