Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologists map rare case of fitness-reducing interaction in nuclear, mitochondrial DNA

06.02.2013
Incompatible genotype could be better predictor of genetically complex human diseases

A team of biologists from Indiana University and Brown University believes it has discovered the mechanism by which interacting mutations in mitochondrial and nuclear DNA produce an incompatible genotype that reduces reproductive fitness and delays development in fruit flies.

The new research, led by IU biologists Kristi Montooth and Colin Meiklejohn and including former IU undergraduate researcher Mo Siddiq, describes the cause and consequences of an interaction between the two genomes that co-exist within eukaryotic cells. Animal mitochondrial DNA, or mtDNA, is a small but important genome that encodes a handful of proteins that are essential to oxidative phosphorylation, the pathway that produces the adenosine triphosphate molecule that fuels cellular metabolism.

With this new characterization of a disruptive interaction between mtDNA and nuclear DNA mutations, the scientists provide one of the few mapped cases of a fitness-reducing mitochondrial-nuclear incompatibility.

The genetic interaction that IU biologists mapped, in collaboration with Brown University biologist David Rand, is between mutations that are present in natural populations, rather than being induced in the lab. This has important consequences for understanding genetically complex human diseases.

Many human diseases, such as neuromuscular and neurodegenerative disorders, are associated with mutations in mitochondrial transfer RNAs, or tRNAs, but a single mutation can be highly variable in the degree to which it leads to disease.

Montooth and her colleagues' findings suggest that the combined mitochondrial-nuclear genotype for tRNAs and their tRNA synthetases may, in fact, be a better predictor of disease.

"Interactions between mitochondrial and nuclear DNA for fitness have been documented in many organisms, but rarely has the genetic or mechanistic basis of these interactions been elucidated," said Montooth, an assistant professor in the IU College of Arts and Sciences' Department of Biology. "This has limited our understanding of which genes harbor variants causing mitochondrial-nuclear disruption and the processes that are impacted by the co-evolution of these genomes."

Using genetic techniques and many resources available from IU's own Bloomington Drosophila Stock Center, the scientists mapped an interaction between a single mutation in a mitochondrial tRNA gene, mt-tRNA-Tyr, and an amino acid change in its nuclear-encoded charging enzyme, the mitochondrially targeted amino acyl tRNA synthetase, mt-TyrRS -- the enzyme that places the proper amino acid on the tRNA to allow for mitochondrial protein synthesis.

"As a result, the incompatibility decreases the activity of the oxidative phosphorylation pathway," Montooth said, "demonstrating that decreased mitochondrial protein synthesis compromises the energetic function required for proper development of adult structures, such as the ovary and sensory bristles."

These types of fitness-reducing genetic incompatibilities are one hypothesized mechanism that can maintain the formation of new species.

The new research, "An Incompatibility Between a Mitochondrial tRNA and Its Nuclear-Encoded tRNA Synthetase Compromises Development and Fitness in Drosophila," was published online Jan. 31 in PLOS Genetics. Additional co-authors with Montooth, Meiklejohn, Siddiq and Rand were Marissa A. Holmbeck and Dawn N. Abt, both of Brown.

This research was funded by the National Institutes of Health, the National Science Foundation, IU and the IU Hutton Honors College.

Steve Chaplin | EurekAlert!
Further information:
http://www.iu.edu

More articles from Life Sciences:

nachricht Molecular evolution: How the building blocks of life may form in space
26.04.2018 | American Institute of Physics

nachricht Multifunctional bacterial microswimmer able to deliver cargo and destroy itself
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>