Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Biologists map rare case of fitness-reducing interaction in nuclear, mitochondrial DNA

Incompatible genotype could be better predictor of genetically complex human diseases

A team of biologists from Indiana University and Brown University believes it has discovered the mechanism by which interacting mutations in mitochondrial and nuclear DNA produce an incompatible genotype that reduces reproductive fitness and delays development in fruit flies.

The new research, led by IU biologists Kristi Montooth and Colin Meiklejohn and including former IU undergraduate researcher Mo Siddiq, describes the cause and consequences of an interaction between the two genomes that co-exist within eukaryotic cells. Animal mitochondrial DNA, or mtDNA, is a small but important genome that encodes a handful of proteins that are essential to oxidative phosphorylation, the pathway that produces the adenosine triphosphate molecule that fuels cellular metabolism.

With this new characterization of a disruptive interaction between mtDNA and nuclear DNA mutations, the scientists provide one of the few mapped cases of a fitness-reducing mitochondrial-nuclear incompatibility.

The genetic interaction that IU biologists mapped, in collaboration with Brown University biologist David Rand, is between mutations that are present in natural populations, rather than being induced in the lab. This has important consequences for understanding genetically complex human diseases.

Many human diseases, such as neuromuscular and neurodegenerative disorders, are associated with mutations in mitochondrial transfer RNAs, or tRNAs, but a single mutation can be highly variable in the degree to which it leads to disease.

Montooth and her colleagues' findings suggest that the combined mitochondrial-nuclear genotype for tRNAs and their tRNA synthetases may, in fact, be a better predictor of disease.

"Interactions between mitochondrial and nuclear DNA for fitness have been documented in many organisms, but rarely has the genetic or mechanistic basis of these interactions been elucidated," said Montooth, an assistant professor in the IU College of Arts and Sciences' Department of Biology. "This has limited our understanding of which genes harbor variants causing mitochondrial-nuclear disruption and the processes that are impacted by the co-evolution of these genomes."

Using genetic techniques and many resources available from IU's own Bloomington Drosophila Stock Center, the scientists mapped an interaction between a single mutation in a mitochondrial tRNA gene, mt-tRNA-Tyr, and an amino acid change in its nuclear-encoded charging enzyme, the mitochondrially targeted amino acyl tRNA synthetase, mt-TyrRS -- the enzyme that places the proper amino acid on the tRNA to allow for mitochondrial protein synthesis.

"As a result, the incompatibility decreases the activity of the oxidative phosphorylation pathway," Montooth said, "demonstrating that decreased mitochondrial protein synthesis compromises the energetic function required for proper development of adult structures, such as the ovary and sensory bristles."

These types of fitness-reducing genetic incompatibilities are one hypothesized mechanism that can maintain the formation of new species.

The new research, "An Incompatibility Between a Mitochondrial tRNA and Its Nuclear-Encoded tRNA Synthetase Compromises Development and Fitness in Drosophila," was published online Jan. 31 in PLOS Genetics. Additional co-authors with Montooth, Meiklejohn, Siddiq and Rand were Marissa A. Holmbeck and Dawn N. Abt, both of Brown.

This research was funded by the National Institutes of Health, the National Science Foundation, IU and the IU Hutton Honors College.

Steve Chaplin | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Two decades of training students and experts in tracking infectious disease
27.11.2015 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Increased carbon dioxide enhances plankton growth, opposite of what was expected
27.11.2015 | Bigelow Laboratory for Ocean Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Siemens to supply 126 megawatts to onshore wind power plants in Scotland

27.11.2015 | Press release

Two decades of training students and experts in tracking infectious disease

27.11.2015 | Life Sciences

Coming to a monitor near you: A defect-free, molecule-thick film

27.11.2015 | Materials Sciences

More VideoLinks >>>