Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologists map rare case of fitness-reducing interaction in nuclear, mitochondrial DNA

06.02.2013
Incompatible genotype could be better predictor of genetically complex human diseases

A team of biologists from Indiana University and Brown University believes it has discovered the mechanism by which interacting mutations in mitochondrial and nuclear DNA produce an incompatible genotype that reduces reproductive fitness and delays development in fruit flies.

The new research, led by IU biologists Kristi Montooth and Colin Meiklejohn and including former IU undergraduate researcher Mo Siddiq, describes the cause and consequences of an interaction between the two genomes that co-exist within eukaryotic cells. Animal mitochondrial DNA, or mtDNA, is a small but important genome that encodes a handful of proteins that are essential to oxidative phosphorylation, the pathway that produces the adenosine triphosphate molecule that fuels cellular metabolism.

With this new characterization of a disruptive interaction between mtDNA and nuclear DNA mutations, the scientists provide one of the few mapped cases of a fitness-reducing mitochondrial-nuclear incompatibility.

The genetic interaction that IU biologists mapped, in collaboration with Brown University biologist David Rand, is between mutations that are present in natural populations, rather than being induced in the lab. This has important consequences for understanding genetically complex human diseases.

Many human diseases, such as neuromuscular and neurodegenerative disorders, are associated with mutations in mitochondrial transfer RNAs, or tRNAs, but a single mutation can be highly variable in the degree to which it leads to disease.

Montooth and her colleagues' findings suggest that the combined mitochondrial-nuclear genotype for tRNAs and their tRNA synthetases may, in fact, be a better predictor of disease.

"Interactions between mitochondrial and nuclear DNA for fitness have been documented in many organisms, but rarely has the genetic or mechanistic basis of these interactions been elucidated," said Montooth, an assistant professor in the IU College of Arts and Sciences' Department of Biology. "This has limited our understanding of which genes harbor variants causing mitochondrial-nuclear disruption and the processes that are impacted by the co-evolution of these genomes."

Using genetic techniques and many resources available from IU's own Bloomington Drosophila Stock Center, the scientists mapped an interaction between a single mutation in a mitochondrial tRNA gene, mt-tRNA-Tyr, and an amino acid change in its nuclear-encoded charging enzyme, the mitochondrially targeted amino acyl tRNA synthetase, mt-TyrRS -- the enzyme that places the proper amino acid on the tRNA to allow for mitochondrial protein synthesis.

"As a result, the incompatibility decreases the activity of the oxidative phosphorylation pathway," Montooth said, "demonstrating that decreased mitochondrial protein synthesis compromises the energetic function required for proper development of adult structures, such as the ovary and sensory bristles."

These types of fitness-reducing genetic incompatibilities are one hypothesized mechanism that can maintain the formation of new species.

The new research, "An Incompatibility Between a Mitochondrial tRNA and Its Nuclear-Encoded tRNA Synthetase Compromises Development and Fitness in Drosophila," was published online Jan. 31 in PLOS Genetics. Additional co-authors with Montooth, Meiklejohn, Siddiq and Rand were Marissa A. Holmbeck and Dawn N. Abt, both of Brown.

This research was funded by the National Institutes of Health, the National Science Foundation, IU and the IU Hutton Honors College.

Steve Chaplin | EurekAlert!
Further information:
http://www.iu.edu

More articles from Life Sciences:

nachricht Molecular Spies to Fight Cancer - Procedure for improving tumor diagnosis successfully tested
03.08.2015 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Stroke: news about platelets
03.08.2015 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Glaciers melt faster than ever

Glacier decline in the first decade of the 21st century has reached a historical record, since the onset of direct observations. Glacier melt is a global phenomenon and will continue even without further climate change. This is shown in the latest study by the World Glacier Monitoring Service under the lead of the University of Zurich, Switzerland.

The World Glacier Monitoring Service, domiciled at the University of Zurich, has compiled worldwide data on glacier changes for more than 120 years. Together...

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

“Seeing” molecular interactions could give boost to organic electronics

03.08.2015 | Materials Sciences

Stroke: news about platelets

03.08.2015 | Life Sciences

Molecular Spies to Fight Cancer - Procedure for improving tumor diagnosis successfully tested

03.08.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>