Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologists identify genes regulating sleeping and feeding

11.06.2010
In the quest to better understand how the brain chooses between competing behaviors necessary for survival, scientists at the University of Massachusetts Medical School and New York University have isolated two genes in the fruit fly Drosophila that work together to mediate the need to sleep and the need to eat. The study, which appears in the online version of Current Biology, offers insights that may be used to understand sleep-and metabolism-related disorders in humans.

"This work determines part of the neural mechanism that mediates a conflict in a hungry fly's brain in deciding whether to seek food or sleep," said Scott Waddell, PhD, associate professor of neurobiology.

"It provides a foundation for understanding how the neural control of these two homeostatic behaviors is integrated in the brain." Previous research has shown that neural systems controlling sleep and feeding in mammals are interconnected: sleep deprivation promotes feeding, whereas starvation suppresses sleep, but little was known about the genes responsible for this interaction. Because the genes that make up Drosophila's internal clock have counterparts with similar functions in mammals, such as those controlling regulation of sleep and metabolism, the study of fruit fly genes can have implications for humans.

After initially screening around 2,000 genes, the researchers identified more than a dozen involved in the interaction between feeding and sleep. From this smaller group, they focused on the Clock and cycle genes, which play a role in both the fruit fly and mammalian circadian, or biological, clock.

To determine the impact of these two genes on the relationship between sleeping and feeding, the researchers examined fruit flies with and without the Clock and cycle genes under food deprivation conditions—the flies were given only a liquid gel containing no nutrients over a 24-hour period and the researchers monitored the flies' movement to determine resulting sleep behavior.

Their results showed a three-to-four-fold reduction in sleep in starved flies missing the Clock and cycle genes compared to flies possessing these genes. The findings therefore suggest that both Clock and cycle help the flies to regulate sleep when they are food deprived.

"This is a significant advance in how we approach behavioral genetics," said Alex Keene, PhD, a post-doctoral researcher in NYU's department of biology and the study's lead author. "We know that the brain is wired to engage in more than one behavior at a time, but less clear is how the brain chooses between these behaviors. These findings are transformative because they show that a gene can control sleep in a context-specific fashion. In the future, we will need to study animals in different environmental conditions in order to fully understand how the brain controls behavior. "

About the University of Massachusetts Medical School

The University of Massachusetts Medical School, one of the fastest growing academic health centers in the country, has built a reputation as a world-class research institution, consistently producing noteworthy advances in clinical and basic research. The Medical School attracts more than $240 million in research funding annually, 80 percent of which comes from federal funding sources. The mission of the Medical School is to advance the health and well-being of the people of the commonwealth and the world through pioneering education, research, public service and health care delivery with its clinical partner, UMass Memorial Health Care.

Jim Fessenden | EurekAlert!
Further information:
http://www.umassmed.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>