Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologists identify genes regulating sleeping and feeding

11.06.2010
In the quest to better understand how the brain chooses between competing behaviors necessary for survival, scientists at the University of Massachusetts Medical School and New York University have isolated two genes in the fruit fly Drosophila that work together to mediate the need to sleep and the need to eat. The study, which appears in the online version of Current Biology, offers insights that may be used to understand sleep-and metabolism-related disorders in humans.

"This work determines part of the neural mechanism that mediates a conflict in a hungry fly's brain in deciding whether to seek food or sleep," said Scott Waddell, PhD, associate professor of neurobiology.

"It provides a foundation for understanding how the neural control of these two homeostatic behaviors is integrated in the brain." Previous research has shown that neural systems controlling sleep and feeding in mammals are interconnected: sleep deprivation promotes feeding, whereas starvation suppresses sleep, but little was known about the genes responsible for this interaction. Because the genes that make up Drosophila's internal clock have counterparts with similar functions in mammals, such as those controlling regulation of sleep and metabolism, the study of fruit fly genes can have implications for humans.

After initially screening around 2,000 genes, the researchers identified more than a dozen involved in the interaction between feeding and sleep. From this smaller group, they focused on the Clock and cycle genes, which play a role in both the fruit fly and mammalian circadian, or biological, clock.

To determine the impact of these two genes on the relationship between sleeping and feeding, the researchers examined fruit flies with and without the Clock and cycle genes under food deprivation conditions—the flies were given only a liquid gel containing no nutrients over a 24-hour period and the researchers monitored the flies' movement to determine resulting sleep behavior.

Their results showed a three-to-four-fold reduction in sleep in starved flies missing the Clock and cycle genes compared to flies possessing these genes. The findings therefore suggest that both Clock and cycle help the flies to regulate sleep when they are food deprived.

"This is a significant advance in how we approach behavioral genetics," said Alex Keene, PhD, a post-doctoral researcher in NYU's department of biology and the study's lead author. "We know that the brain is wired to engage in more than one behavior at a time, but less clear is how the brain chooses between these behaviors. These findings are transformative because they show that a gene can control sleep in a context-specific fashion. In the future, we will need to study animals in different environmental conditions in order to fully understand how the brain controls behavior. "

About the University of Massachusetts Medical School

The University of Massachusetts Medical School, one of the fastest growing academic health centers in the country, has built a reputation as a world-class research institution, consistently producing noteworthy advances in clinical and basic research. The Medical School attracts more than $240 million in research funding annually, 80 percent of which comes from federal funding sources. The mission of the Medical School is to advance the health and well-being of the people of the commonwealth and the world through pioneering education, research, public service and health care delivery with its clinical partner, UMass Memorial Health Care.

Jim Fessenden | EurekAlert!
Further information:
http://www.umassmed.edu

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>