Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologists identify a new clue into cellular aging

08.07.2010
The ability to combat some age-related diseases, such as cancer and diabetes, may rest with scientists unlocking clues about the molecular and cellular processes governing aging.

The underlying theory is that if the healthy portion of an individual’s life span can be extended, it may delay the onset of certain age-related diseases. In the search to understand these molecular processes, researchers at the University of Massachusetts Medical School have uncovered an important new DAF-16 isoform – DAF-16d/f – that collaborates with other DAF-16 protein isoforms to regulate longevity.

Part of the insulin signaling pathway, DAF-16 plays a critical role in a number of biological processes in C. elegans, including longevity, lipid metabolism, stress response and development, and is the center of a complex network of genes and proteins. Previous studies have identified the isoform – a different form of the same protein – DAF-16a as a regulator of longevity; genetically knocking down the DAF-16a isoform shortens C. elegans’ life span. In a new study appearing in the July 7 advanced online edition of Nature, Heidi A. Tissenbaum, PhD, associate professor of molecular medicine, and colleagues in the Program in Gene Function and Expression at UMass Medical School, show that the newly discovered isoform DAF-16d/f works in concert with DAF-16a to promote organismal life span.

“Up until now, research has focused on the DAF-16a and DAF-16b isoforms,” said Dr. Tissenbaum. “What we’re able to show is that DAF-16a alone is insufficient for lifespan regulation. Moving forward, any discussion about the process of aging will have to include this new protein isoform.”

To see the effect of DAF-16d/f on life span, lead author Dr. Eun-soo Kwon, a post-doctoral fellow in the Tissenbaum laboratory, increased expression of the DAF-16d/f and DAF-16a in C. elegans. These studies showed that worms with the overexpressed DAF-16d/f lived longest. Additional experiments reveal that worms expressing DAF-16d/f were also more tolerant to heat stress during development and store more fat.

Because the DAF-16 gene in C. elegans is homologous to the FOXO gene in mammals, it may provide clues to longevity in humans. “Understanding the molecular pathways of DAF-16 and other genes will give us insight into aging at both the cellular and organism levels,” said Tissenbuam. “As we age, at a certain point, something happens that triggers age-related disease. If we can learn what these signals are, it’s possible we can find a way to extend the healthy portion of a person’s life span and potentially delay the onset of age-related diseases such as cancer, diabetes and Alzheimer’s.”

The next line of inquiry will explore whether an increase in life span correlates to the health of the worm. “It’s possible that we’re restoring life span, but we don’t know the effect of doing so,” said Tissenbaum. “We have to explore whether this increased lifespan is of the healthy portion of the lifespan.”

Graduate student Sri Devi Narasimhan and post-doctoral fellow Dr. Kelvin Yen also contributed to this study.

About the University of Massachusetts Medical School
The University of Massachusetts Medical School, one of the fastest growing academic health centers in the country, has built a reputation as a world-class research institution, consistently producing noteworthy advances in clinical and basic research. The Medical School attracts more than $240 million in research funding annually, 80 percent of which comes from federal funding sources. The mission of the Medical School is to advance the health and well-being of the people of the commonwealth and the world through pioneering education, research, public service and health care delivery with its clinical partner, UMass Memorial Health Care. For more information, visit www.umassmed.edu.
Contact: Jim Fessenden
Public Affairs and Publications
508-856-2000; ummsnews@umassmed.edu

Jim Fessenden | EurekAlert!
Further information:
http://www.umassmed.edu

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>