Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologists Find Way to Reduce Stem Cell Loss During Cancer Treatment

06.09.2010
Biologists at the University of California, San Diego have discovered that a gene critical for programmed cell death is also important in the loss of adult stem cells, a finding that could help to improve the health and well-being of patients undergoing cancer treatment.

“During chemotherapy or radiation therapy that kills cancer cells by inducing significant DNA damage in their genomes, one of the main side effects for human cancer patients is the depletion of their own adult stem cells, particularly the ones responsible for making new blood and intestine cells. So these patients become anemic, lose appetite and a lot of weight,” said Yang Xu, a professor of biology at UC San Diego who headed the team that published its findings in this week’s advance online issue of the journal Nature Cell Biology. “If we can prevent the loss of stem cells during cancer therapy, that would be very beneficial for these patients.”

Scientists have long known that when normal cells accumulate significant amount of DNA damage, such as during cancer therapy, the tumor suppressor p53 is activated, which leads cells to stop dividing, go into hibernation and undergo a programmed cell death called apoptosis. They’ve also known that a gene called Puma, an acronym for “p53-unregulated modulator of apoptosis,” is critical for p53 to initiate the cell death of DNA-damaged cells.

Using genetically modified mice with persistently activated p53, Xu and his colleagues discovered that, once activated, p53 depletes various adult stem cells, including the ones that are responsible for generating new blood and intestine cells. In addition, Puma is critical for this p53-dependent depletion of various adult stem cells.

“Since p53 is a critical tumor suppressor, you cannot suppress p53 to prevent the depletion of adult stem cells since it will induce cancer,” said Xu. “But you can target Puma to prevent p53-mediated depletion of adult stem cells, because a Puma deficiency does not promote the development of cancer. This gives us a nice target for preventing the p53-dependent depletion of adult stem cells in response to DNA damage. If you can suppress Puma function, you can rescue a lot of the adult stem cells that would otherwise be lost after the accumulation of DNA damage such as during cancer therapy.”

Other co-authors of this paper are Dongping Liu, Linda Ou, Connie Chao and Marshall Lutske of UCSD; Gregory Clemenson and Fred Gage of the Salk Institute for Biological Studies and Gerard Zambetti of St. Jude Children’s Research Hospital in Memphis, Tenn. Funding for the study was provided by the National Institutes of Health.

Media Contact:
Kim McDonald (858) 534-7572, kmcdonald@ucsd.edu
Comment: Yang Xu, (858) 822-1084, yangxu@ucsd.edu

Kim McDonald | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>