Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologists Find Way to Reduce Stem Cell Loss During Cancer Treatment

06.09.2010
Biologists at the University of California, San Diego have discovered that a gene critical for programmed cell death is also important in the loss of adult stem cells, a finding that could help to improve the health and well-being of patients undergoing cancer treatment.

“During chemotherapy or radiation therapy that kills cancer cells by inducing significant DNA damage in their genomes, one of the main side effects for human cancer patients is the depletion of their own adult stem cells, particularly the ones responsible for making new blood and intestine cells. So these patients become anemic, lose appetite and a lot of weight,” said Yang Xu, a professor of biology at UC San Diego who headed the team that published its findings in this week’s advance online issue of the journal Nature Cell Biology. “If we can prevent the loss of stem cells during cancer therapy, that would be very beneficial for these patients.”

Scientists have long known that when normal cells accumulate significant amount of DNA damage, such as during cancer therapy, the tumor suppressor p53 is activated, which leads cells to stop dividing, go into hibernation and undergo a programmed cell death called apoptosis. They’ve also known that a gene called Puma, an acronym for “p53-unregulated modulator of apoptosis,” is critical for p53 to initiate the cell death of DNA-damaged cells.

Using genetically modified mice with persistently activated p53, Xu and his colleagues discovered that, once activated, p53 depletes various adult stem cells, including the ones that are responsible for generating new blood and intestine cells. In addition, Puma is critical for this p53-dependent depletion of various adult stem cells.

“Since p53 is a critical tumor suppressor, you cannot suppress p53 to prevent the depletion of adult stem cells since it will induce cancer,” said Xu. “But you can target Puma to prevent p53-mediated depletion of adult stem cells, because a Puma deficiency does not promote the development of cancer. This gives us a nice target for preventing the p53-dependent depletion of adult stem cells in response to DNA damage. If you can suppress Puma function, you can rescue a lot of the adult stem cells that would otherwise be lost after the accumulation of DNA damage such as during cancer therapy.”

Other co-authors of this paper are Dongping Liu, Linda Ou, Connie Chao and Marshall Lutske of UCSD; Gregory Clemenson and Fred Gage of the Salk Institute for Biological Studies and Gerard Zambetti of St. Jude Children’s Research Hospital in Memphis, Tenn. Funding for the study was provided by the National Institutes of Health.

Media Contact:
Kim McDonald (858) 534-7572, kmcdonald@ucsd.edu
Comment: Yang Xu, (858) 822-1084, yangxu@ucsd.edu

Kim McDonald | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>