Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Biologists Find Way to Reduce Stem Cell Loss During Cancer Treatment

Biologists at the University of California, San Diego have discovered that a gene critical for programmed cell death is also important in the loss of adult stem cells, a finding that could help to improve the health and well-being of patients undergoing cancer treatment.

“During chemotherapy or radiation therapy that kills cancer cells by inducing significant DNA damage in their genomes, one of the main side effects for human cancer patients is the depletion of their own adult stem cells, particularly the ones responsible for making new blood and intestine cells. So these patients become anemic, lose appetite and a lot of weight,” said Yang Xu, a professor of biology at UC San Diego who headed the team that published its findings in this week’s advance online issue of the journal Nature Cell Biology. “If we can prevent the loss of stem cells during cancer therapy, that would be very beneficial for these patients.”

Scientists have long known that when normal cells accumulate significant amount of DNA damage, such as during cancer therapy, the tumor suppressor p53 is activated, which leads cells to stop dividing, go into hibernation and undergo a programmed cell death called apoptosis. They’ve also known that a gene called Puma, an acronym for “p53-unregulated modulator of apoptosis,” is critical for p53 to initiate the cell death of DNA-damaged cells.

Using genetically modified mice with persistently activated p53, Xu and his colleagues discovered that, once activated, p53 depletes various adult stem cells, including the ones that are responsible for generating new blood and intestine cells. In addition, Puma is critical for this p53-dependent depletion of various adult stem cells.

“Since p53 is a critical tumor suppressor, you cannot suppress p53 to prevent the depletion of adult stem cells since it will induce cancer,” said Xu. “But you can target Puma to prevent p53-mediated depletion of adult stem cells, because a Puma deficiency does not promote the development of cancer. This gives us a nice target for preventing the p53-dependent depletion of adult stem cells in response to DNA damage. If you can suppress Puma function, you can rescue a lot of the adult stem cells that would otherwise be lost after the accumulation of DNA damage such as during cancer therapy.”

Other co-authors of this paper are Dongping Liu, Linda Ou, Connie Chao and Marshall Lutske of UCSD; Gregory Clemenson and Fred Gage of the Salk Institute for Biological Studies and Gerard Zambetti of St. Jude Children’s Research Hospital in Memphis, Tenn. Funding for the study was provided by the National Institutes of Health.

Media Contact:
Kim McDonald (858) 534-7572,
Comment: Yang Xu, (858) 822-1084,

Kim McDonald | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>