Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologists find an evolutionary Facebook for monkeys and apes

19.11.2013
Why do the faces of some primates contain so many different colors — black, blue, red, orange and white — that are mixed in all kinds of combinations and often striking patterns while other primate faces are quite plain?

UCLA biologists reported last year on the evolution of 129 primate faces in species from Central and South America. This research team now reports on the faces of 139 Old World African and Asian primate species that have been diversifying over some 25 million years.

With these Old World monkeys and apes, the species that are more social have more complex facial patterns, the biologists found. Species that have smaller group sizes tend to have simpler faces with fewer colors, perhaps because the presence of more color patches in the face results in greater potential for facial variation across individuals within species. This variation could aid in identification, which may be a more difficult task in larger groups.

Species that live in the same habitat with other closely related species tend to have more complex facial patterns, suggesting that complex faces may also aid in species recognition, the life scientists found.

"Humans are crazy for Facebook, but our research suggests that primates have been relying on the face to tell friends from competitors for the last 50 million years and that social pressures have guided the evolution of the enormous diversity of faces we see across the group today," said Michael Alfaro, an associate professor of ecology and evolutionary biology in the UCLA College of Letters and Science and senior author of the study.

"Faces are really important to how monkeys and apes can tell one another apart," he said. "We think the color patterns have to do both with the importance of telling individuals of your own species apart from closely related species and for social communication among members of the same species."

Most Old World monkeys and apes are social, and some species, like the mandrills, can live in groups with up to 800 members, said co-author Jessica Lynch Alfaro, an adjunct assistant professor in the UCLA Department of Anthropology and UCLA's Institute for Society and Genetics. At the other extreme are solitary species, like the orangutans. In most orangutan populations, adult males travel and sleep alone, and females are accompanied only by their young, she said. Some primates, like chimpanzees, have "fission–fusion societies," where they break up into small sub-groups and come together occasionally in very large communities. Others, like the hamadryas baboons, have tiered societies with harems, clans, bands and troops, she said.

"Our research suggests increasing group size puts more pressure on the evolution of coloration across different sub-regions of the face," Michael Alfaro said.

This allows members of a species to have "more communication avenues, a greater repertoire of facial vocabulary, which is advantageous if you're interacting with many members of your species," he said.

The research, federally funded by the National Science Foundation and supported through a postdoctoral fellowship from the UCLA Institute for Society and Genetics, was published Nov. 11 in the journal Nature Communications.

Lead study author Sharlene Santana used photographs of primate faces for her analysis and devised a new method to quantify the complex patterns of primate faces. She divided each face into several regions; classified the color of each part of the face, including the hair and skin; and assigned a score based on the total number of different colors across the facial regions. This numerical score is called the "facial complexity" score. The life scientists then studied how the complexity scores of primate faces were related to primates' social systems.

The habitat where species live presents many potential pressures that could have influenced the evolution of facial coloration. To assess how facial colors are related to physical environments, the researchers analyzed environmental variables such as geographic location, canopy density, rainfall and temperature. They also used statistical methods that took into account the evolutionary history and relationships among the primate groups to better understand the evolution of facial diversity and complexity.

While facial complexity was related to social variables, such as group size and the number of closely related species in the same habitat, facial pigmentation was best explained by ecological and spatial factors. Where a species lives is a good predictor of its degree of facial pigmentation — how light or dark the face is.

"Our map shows clearly the geographic trend in Africa of primate faces getting darker nearer to the equator and lighter as we move farther away from the equator," Lynch Alfaro said. "This is the same trend we see on an intra-species level for human skin pigmentation around the globe."

Species living in more tropical and more densely forested habitats also tend to have darker, more pigmented faces. But the complexity of facial color patterns is not related to habitat type.

"We found that for African primates, faces tend to be light or dark depending on how open or closed the habitat is and on how much light the habitat receives," Alfaro said. "We also found that no matter where you live, if your species has a large social group, then your face tends to be more complex. It will tend to be darker and more complex if you're in a closed habitat in a large social group, and it will tend to be lighter and more complex if you're in an open habitat with a large social group. Darkness or lightness is explained by geography and habitat type. Facial complexity is better explained by the size of your social group."

In their research on primates from Central and South America published last year, the scientists were surprised to find a different pattern. For these primates, species that lived in larger groups had more plain facial patterns.

"We expected to find similar trends across all primate radiations — that is, that the faces of highly social species would have more complex patterning," said Santana, who conducted the research as a postdoctoral fellow with the UCLA Department of Ecology and Evolutionary Biology and UCLA's Institute for Society and Genetics and who is now an assistant professor at the University of Washington and curator of mammals at the Burke Museum of Natural History and Culture. "We were surprised by the results in our original study on neotropical (Central and South American) primates."

In the new study, they did find the predicted trends, but they also found differences across primate groups — differences they said they found intriguing. Are primate groups using their faces differently?

"In the present study, great apes had significantly lower facial complexity compared to monkeys," Lynch Alfaro said. "This may be because apes are using their faces for highly complex facial expressions and these expressions would be obscured by more complex facial color patterns. There may be competing pressures for and against facial pattern complexity in large groups, and different lineages may solve this problem in different ways."

"Our research shows that being more or less social is a key explanation for the facial diversity that we see," Alfaro said. "Ecology is also important, such as camouflage and thermal regulation, but our research suggests that faces have evolved along with the diversity of social behaviors in primates, and that is the big cause of facial diversity."

Alfaro and his colleagues serve as "evolutionary detectives," asking what factors produced the patterns of species richness and diversity of traits.

"When evolutionary biologists see these striking patterns of richness, we want to understand the underlying causes," he said.

Human faces were not part of the analysis, although humans also belong to the "clade Catarrhini, which includes Old World monkeys and apes.

Andrew Noonan, a former UCLA undergraduate student who conducted research in Alfaros laboratory, was also a co-author of this research.

For more on the Alfaros' research, visit the Alfaro Lab website.

UCLA is California's largest university, with an enrollment of more than 40,000 undergraduate and graduate students. The UCLA College of Letters and Science and the university's 11 professional schools feature renowned faculty and offer 337 degree programs and majors. UCLA is a national and international leader in the breadth and quality of its academic, research, health care, cultural, continuing education and athletic programs. Seven alumni and six faculty have been awarded the Nobel Prize.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Stuart Wolpert | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>