Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologists discover biochemical link between biological clock and diabetes

20.09.2010
Biologists have found that a key protein that regulates the biological clocks of mammals also regulates glucose production in the liver and that altering the levels of this protein can improve the health of diabetic mice.

Their discovery, detailed in this week's advanced online publication of the journal Nature Medicine, provides an entirely new biochemical approach for scientists to develop treatments for obesity and type 2 diabetes. It also raises the interesting possibility that some of the rise in diabetes in the U.S. and other major industrialized countries could be a consequence of disturbances in sleep-wake cycles from our increasingly around-the-clock lifestyles.

"We know that mice that don't have good biological clocks tend to develop diabetes and obesity," said Steve Kay, Dean of the Division of Biological Sciences at UC San Diego and one of the lead authors of the research study. "And we know that mice that have developed diabetes and obesity tend not to have very good biological clocks. This reciprocal relationship between circadian rhythm and the maintenance of a constant supply of glucose in the body had been known for some time. But what we found that's so significant is that a particular biological clock protein, cryptochrome, is actually regulating how the hormone that regulates glucose production in the liver works in a very specific way."

"We used to think that our metabolism was regulated primarily by hormones that are released from the pancreas during fasting or feeding. This work shows that the biological clock determines how well these hormones work to regulate metabolism," says Marc Montminy, a professor in the Clayton Foundation Laboratories for Peptide Biology at the Salk Institute for Biological Studies. "The study may explain why shift workers, whose biological clocks are often out of kilter, also have a greater risk of developing obesity and insulin resistance."

Cryptochrome was first discovered by scientists as a key protein regulating the biological clocks of plants. It was later found to have the same function in fruit flies and mammals. But its role in regulating glucose production in the liver came as a complete surprise to the UCSD and Salk team, which included scientists from the Genomics Institute of the Novartis Research Foundation in San Diego, the University of Memphis and the Chinese Academy of Sciences in Shanghai.

"What was incredibly surprising is that cryptochrome has a new function that nobody had predicted," said Eric Zhang, the first author of the study and a researcher in Kay's UCSD laboratory. "Until now, cryptochrome had been known as a protein inside the nucleus of mammalian cells that switches genes on and off in a rhythmic way. What we showed was that cryptochrome has a role outside the nucleus as well."

That additional function of cryptochrome in mammalian cells, the scientists discovered, is to regulate a process known as "gluconeogenesis," in which our bodies supply a constant stream of glucose to keep our brain and the rest of our organs and cells functioning. When we're awake and eating, sufficient glucose is supplied to our bloodstream. But when we're asleep or fasting, glucose needs to be synthesized from the glycogen stored in our liver to keep our glucose levels up.

"That is how our energy metabolism evolved to function in concert with our diurnal activity, or in the case of the mice, their nocturnal activity," said Kay. "This molecular mechanism involving cryptochrome presumably evolved to coordinate our energy metabolism with our daily activity and feeding levels. So could some instances of diabetes be the result of a faulty circadian clock? And if that's the case, can we find ways of fixing the clock to treat this disease? Such an approach would be a whole new way of thinking about how to develop new treatments for diabetes."

In their study, the scientists found evidence that such an approach would be feasible. "Our experiments show very nicely that modulating cryptochrome levels in the liver of mice can actually give diabetic animals a benefit," Kay added.

The researchers discovered cryptochrome's role in gluconeogenesis while studying how a signaling molecule known as cyclic AMP interacted with the biological clock.

"It had been known for some time now that there was a connection between cyclic AMP signaling and circadian rhythm regulation and that's where we started," said Kay, "by asking the question: How are those two connected?"

Zhang and his UCSD colleagues conducted a series of experiments that found that the production of the next step after cyclic AMP, a protein called Creb, ebbed and flowed rhythmically in the livers of mice. That led the scientists to their initial discovery that cryptochrome was regulating the production of Creb in the liver.

In their studies with fasting and insulin-resistant mice at the Salk Institute, the scientists found that cryptochrome was regulating how the hormone glucagon, which controls gluconeogenesis, works in a very specific way. By controlling the production of cyclic AMP, crytochrome regulates the activity of Creb in the liver. In this way, the production of glucose in the liver is tied through our daily eating, sleeping and fasting activities through the biological clock.

The scientists say their discovery may open up a whole new area of research into how cryptochrome may be regulating other cell functions outside the nucleus.

"There's a wide role that the biological clock may be playing in influencing other hormones, not just glucagon, that are important for metabolism," said Kay.

In addition, studies on human populations have found links between disturbances in the biological clock, such as shift work and chronic jet lag, and the propensity to develop certain kinds of cancers as well as diabetes. Because of this, the scientists plan to continue their research into cryptochrome, looking for compounds that may enhance or diminish the activity of this critical biological clock protein.

The research was funded by grants from the National Institutes of Health. Other co-authors of the paper include Tsuyoshi Hirota, Dmitri A Nusinow, Pagkapol Pongsawakul and Andrew Liu of UCSD's Division of Biological Sciences; David Brenner and Yuzo Kodama of the UCSD School of Medicine; Yi Liu, Renaud Dentin and Severine Landais of The Salk Institute; and Xiujie Sun of the Chinese Academy of Sciences.

Kim McDonald | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>