Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologists discover biochemical link between biological clock and diabetes

20.09.2010
Biologists have found that a key protein that regulates the biological clocks of mammals also regulates glucose production in the liver and that altering the levels of this protein can improve the health of diabetic mice.

Their discovery, detailed in this week's advanced online publication of the journal Nature Medicine, provides an entirely new biochemical approach for scientists to develop treatments for obesity and type 2 diabetes. It also raises the interesting possibility that some of the rise in diabetes in the U.S. and other major industrialized countries could be a consequence of disturbances in sleep-wake cycles from our increasingly around-the-clock lifestyles.

"We know that mice that don't have good biological clocks tend to develop diabetes and obesity," said Steve Kay, Dean of the Division of Biological Sciences at UC San Diego and one of the lead authors of the research study. "And we know that mice that have developed diabetes and obesity tend not to have very good biological clocks. This reciprocal relationship between circadian rhythm and the maintenance of a constant supply of glucose in the body had been known for some time. But what we found that's so significant is that a particular biological clock protein, cryptochrome, is actually regulating how the hormone that regulates glucose production in the liver works in a very specific way."

"We used to think that our metabolism was regulated primarily by hormones that are released from the pancreas during fasting or feeding. This work shows that the biological clock determines how well these hormones work to regulate metabolism," says Marc Montminy, a professor in the Clayton Foundation Laboratories for Peptide Biology at the Salk Institute for Biological Studies. "The study may explain why shift workers, whose biological clocks are often out of kilter, also have a greater risk of developing obesity and insulin resistance."

Cryptochrome was first discovered by scientists as a key protein regulating the biological clocks of plants. It was later found to have the same function in fruit flies and mammals. But its role in regulating glucose production in the liver came as a complete surprise to the UCSD and Salk team, which included scientists from the Genomics Institute of the Novartis Research Foundation in San Diego, the University of Memphis and the Chinese Academy of Sciences in Shanghai.

"What was incredibly surprising is that cryptochrome has a new function that nobody had predicted," said Eric Zhang, the first author of the study and a researcher in Kay's UCSD laboratory. "Until now, cryptochrome had been known as a protein inside the nucleus of mammalian cells that switches genes on and off in a rhythmic way. What we showed was that cryptochrome has a role outside the nucleus as well."

That additional function of cryptochrome in mammalian cells, the scientists discovered, is to regulate a process known as "gluconeogenesis," in which our bodies supply a constant stream of glucose to keep our brain and the rest of our organs and cells functioning. When we're awake and eating, sufficient glucose is supplied to our bloodstream. But when we're asleep or fasting, glucose needs to be synthesized from the glycogen stored in our liver to keep our glucose levels up.

"That is how our energy metabolism evolved to function in concert with our diurnal activity, or in the case of the mice, their nocturnal activity," said Kay. "This molecular mechanism involving cryptochrome presumably evolved to coordinate our energy metabolism with our daily activity and feeding levels. So could some instances of diabetes be the result of a faulty circadian clock? And if that's the case, can we find ways of fixing the clock to treat this disease? Such an approach would be a whole new way of thinking about how to develop new treatments for diabetes."

In their study, the scientists found evidence that such an approach would be feasible. "Our experiments show very nicely that modulating cryptochrome levels in the liver of mice can actually give diabetic animals a benefit," Kay added.

The researchers discovered cryptochrome's role in gluconeogenesis while studying how a signaling molecule known as cyclic AMP interacted with the biological clock.

"It had been known for some time now that there was a connection between cyclic AMP signaling and circadian rhythm regulation and that's where we started," said Kay, "by asking the question: How are those two connected?"

Zhang and his UCSD colleagues conducted a series of experiments that found that the production of the next step after cyclic AMP, a protein called Creb, ebbed and flowed rhythmically in the livers of mice. That led the scientists to their initial discovery that cryptochrome was regulating the production of Creb in the liver.

In their studies with fasting and insulin-resistant mice at the Salk Institute, the scientists found that cryptochrome was regulating how the hormone glucagon, which controls gluconeogenesis, works in a very specific way. By controlling the production of cyclic AMP, crytochrome regulates the activity of Creb in the liver. In this way, the production of glucose in the liver is tied through our daily eating, sleeping and fasting activities through the biological clock.

The scientists say their discovery may open up a whole new area of research into how cryptochrome may be regulating other cell functions outside the nucleus.

"There's a wide role that the biological clock may be playing in influencing other hormones, not just glucagon, that are important for metabolism," said Kay.

In addition, studies on human populations have found links between disturbances in the biological clock, such as shift work and chronic jet lag, and the propensity to develop certain kinds of cancers as well as diabetes. Because of this, the scientists plan to continue their research into cryptochrome, looking for compounds that may enhance or diminish the activity of this critical biological clock protein.

The research was funded by grants from the National Institutes of Health. Other co-authors of the paper include Tsuyoshi Hirota, Dmitri A Nusinow, Pagkapol Pongsawakul and Andrew Liu of UCSD's Division of Biological Sciences; David Brenner and Yuzo Kodama of the UCSD School of Medicine; Yi Liu, Renaud Dentin and Severine Landais of The Salk Institute; and Xiujie Sun of the Chinese Academy of Sciences.

Kim McDonald | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>