Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologists discover 'death stench' is a universal ancient warning signal

15.09.2009
The smell of recent death or injury that repels living relatives of insects has been identified as a truly ancient signal that functions to avoid disease or predators, biologists have discovered.

David Rollo, professor of biology at McMaster University, found that corpses of animals, from insects to crustaceans, all emit the same death stench produced by a blend of specific fatty acids.

The findings have been published in the journal Evolutionary Biology.

Rollo and his team made the discovery while they were studying the social behavior of cockroaches. When a cockroach finds a good place to live it marks the site with pheromone odours that attract others. In trying to identify the precise chemicals involved, Rollo extracted body juices from dead cockroaches.

"It was amazing to find that the cockroaches avoided places treated with these extracts like the plague," says Rollo. "Naturally, we wanted to identify what chemical was making them all go away."

The team eventually identified the specific chemicals that signaled death. Furthermore, they found that the same fatty acids not only signaled death in ants, caterpillars, and cockroaches, they were equally effective in terrestrial woodlice and pill bugs that are actually not insects but crustaceans related to crayfish and lobsters.

Because insects and crustaceans diverged more than 400-million years ago it is likely that most subsequent species recognize their dead in a similar way, that the origin of such signals was likely even older, and that such behaviour initially occurred in aquatic environments (few crustaceans are terrestrial).

"Recognizing and avoiding the dead could reduce the chances of catching the disease, or allow you to get away with just enough exposure to activate your immunity," says Rollo. Likewise, he adds, release of fatty acids from dismembered body parts could provide a strong warning that a nasty predator was nearby.

"As explained in our study, fatty acids—oleic or linoleic acids—are reliably and quickly released from the cells following death. Evolution appears to have favoured such clues because they were reliably associated with demise, and avoiding contagion and predation are rather critical to survival."

The generality and strength of the phenomenon, coupled with the fact that the fatty acids are essential nutrients rather than pesticides, holds real promise for applications such as plant and stored product protection or exclusion of household pests.

The study was made possible through funding by the Natural Sciences and Engineering Research Council of Canada.

Jane Christmas | EurekAlert!
Further information:
http://www.mcmaster.ca

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA laser communications to provide Orion faster connections

30.03.2017 | Physics and Astronomy

Reusable carbon nanotubes could be the water filter of the future, says RIT study

30.03.2017 | Studies and Analyses

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>