Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologists confirm role of sperm competition in formation of new species

27.09.2013
'Current Biology' article marks culmination of 6 years of research

Female promiscuity—something that occurs in a majority of species, including humans—results in the ejaculates from two or more males overlapping within her reproductive tract. When this happens, sperm compete for fertilization of the female's eggs. In addition, the female has the opportunity to bias fertilization of her eggs in favor of one male's sperm over others.


This image shows a "Drosophila simulans" reproductive tract, following hybrid insemination by a "D. mauritiana" male (red sperm heads) and then remating with a "D. simulans" male (green sperm heads).

Credit: Syracuse University Arts & Sciences

These processes, collectively known as postcopulatory sexual selection, drive a myriad of rapid, coordinated evolutionary changes in ejaculate and female reproductive tract traits. These changes have been predicted to be an important part of speciation, the process by which new biological species arise.

Until now, traits and processes that influence fertilization success have been poorly understood, due to the challenges of observing what sperm do within the female's body and of discriminating sperm among different males. Almost nothing is known about what determines the sperm's fate in hybrid matings where there may be an evolutionary mismatch between ejaculate and female reproductive tract traits.

Professor John Belote has overcome these challenges by genetically engineering closely related species of fruit flies with different colors of glow-in-the-dark-sperm. Working closely with Scott Pitnick, Mollie Manier, and other colleagues in SU's Pitnick Lab, he is able to observe ejaculate-female interactions and sperm competition in hybrid matings.

"How new species arise is one of the most important questions facing biologists, and we still have a lot to learn," says Pitnick, a professor in SU's Department of Biology in The College of Arts and Sciences, adding that the mechanisms maintaining the genetic boundary between species is difficult to pin down. "This paper [in Current Biology] is perhaps the most important one of my career. It has been six years in the making."

Belote, also a professor in the Department of Biology, says that sexual selection research has addressed mainly precopulatory, rather than postcopulatory selection. This disparity is due, in part, to the aforementioned difficulties of studying ejaculate-ejaculate and ejaculate-female interactions.

"By focusing on phenotypic divergence [i.e., the genetic make-up and environmental influences] between sister species in postcopulatory sexual selection, we can predict patterns of reproductive isolation and the causal mechanisms underlying such isolation," he says.

In addition to Belote and Pitnick, the article was co-authored by William T. Starmer, professor of biology at SU; Manier, a former SU research associate who is assistant professor of biology at the George Washington University; Stefan Lüpold, an SU research assistant professor; Kirstin S. Berben, an SU lab technician; Outi Ala-Honkola, a former SU postdoctoral fellow who is a biologist at the University of Jyväskylä (Finland); and William F. Collins '12, a former student of Pitnick's who is a master's candidate at the Johns Hopkins' School of Advanced International Studies.

The study of sexual selection can trace its origins to Charles Darwin's landmark book "The Descent of Man and Selection in Relation to Sex" (1871). Since then, much has been written on the subject. That it is relatively easy to witness what males do to exert dominance—think of elephant seals slashing one another's necks or of bighorn sheep ramming horns—and what females look for in certain suitors, such as the iridescent plumage of the male peacock, sheds light on precopulatory sexual selection.

By comparison, the study of what happens after mating (i.e., postcopulatory sexual selection) didn't get under way until the 1970s. Then there are the inherent research challenges.

"It's difficult to observe the competition between ejaculates and female discrimination among sperm, given that it takes place inside the female and may involve complex biochemical, physiological and morphological interactions," Pitnick says. "Although we have powerful tools for assigning paternity and for quantifying the outcome of sperm competition and cryptic female choice, it might as well be 1871, in terms of understanding the traits and processes of postcopulatory sexual selection."

Members of the research team include, left to right, Mollie Manier, Stefan Lüpold, Scott Pitnick, and John Belote.

Members of the research team include, left to right, Mollie Manier, Stefan Lüpold, Scott Pitnick and John Belote.

Pitnick and Belote have tackled the problem head on by genetically altering flies, so that their sperm heads are flourescent red or green. This approach has enabled them to directly observe sperm competition within the female, as well as the role of female behavior on sperm fate, such as when she discards sperm by forcefully ejecting it from her reproductive tract.

Central to their research have been two related species of fruit flies, Drosophila simulans and D. mauritiana, which diverged from a common ancestor more than 260,000 years ago—a "blink of an eye" in evolutionary terms, Pitnick says. Working with two closely related flies has helped him and his team better understand how not only sperm competition works, but also underlying mechanisms and processes rapidly evolve.

As a result, Pitnick and Belote are better able to determine what happens when a female mates twice (i.e., once with a male of her own species and once with member of a related species.) Then they can assess the predictability of the outcomes, based on knowledge of evolved ejaculate-female incompatibilities.

"The take-away from our study is that postcopulatory sexual selection can quickly generate critical incompatibilities between ejaculates and female reproductive tracts that limit gene flow between isolated populations or species," Pitnick says. "Because female promiscuity and, by extension, postcopulatory sexual selection is so ubiquitous, it is likely to be a widespread engine of speciation."

Rob Enslin | EurekAlert!
Further information:
http://www.syr.edu

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>