Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologists Capture Cell’s Elusive ‘Motor’ on Videotape

19.05.2011
In basic research with far-reaching impact, cell biologists Wei-Lih Lee and Steven Markus report in an article released today in Developmental Cell, with videos, that they have solved one of the fundamental questions in stem cell division: How dynein, the cell’s two-part, nano-scale “mitotic motor,” positions itself to direct the dividing process.

Their experiments can be likened to restoring never-before-seen footage to a classic film. What’s more, Lee says that footage is crucial to the plot and helps to explain the entire production.

Further, because the same polarization processes as those Lee and colleagues observed in budding yeast occur during asymmetric division of analogous human stem cells, the significance of this discovery is enormous. It should advance understanding of such serious neurological disorders as human lissencephaly, a rare brain formation disorder resulting in a “smooth” brain without folds and grooves, he adds.

In neurons, dynein’s major role is to carry waste products from the nerve terminal to the cell body. If this transport goes awry, neurons degenerate, leading to such diseases as Alzheimer’s and ALS. “Our discovery solves a huge mystery about how dynein works during asymmetric cell divisions, such as those in stem cells, and confirms to us that the regulation we see for yeast dynein is common to mammalian dynein,” Lee says.

In non-neurons, such as dividing stem cells, dynein performs dozens of division-related processes, so many in fact that it’s said to “promiscuously” associate with many different cellular cargoes, Lee adds. He and Markus, with undergraduate Jesse Punch, are known for their previous discoveries of how dynein controls the early steps. They belong to the Morrill Motor & Mitosis group in the UMass Amherst biology department.

As they explain, asymmetric division in stem cells is specialized for generating different cell types that will develop into specific tissues such as skin, heart and kidney. Non-stem cell division is simpler and usually symmetrical.

Dynein, the transport-directing two-part motor and cargo molecule, controls the first steps in asymmetric division, aligning and orienting the chromosome-separating spindle apparatus. When the cell is about to divide, dynein rides at the tips of track-like microtubules to a spot in the outer cell periphery, known as the cortex. Dynein’s tail end binds and offloads the motor to the cortex, anchoring the molecule to the membrane at a point opposite the spindle apparatus.

With this, dynein acts like a tent stake to hold and pull the spindle apparatus as it moves to a new location to form two unequal daughter cells. Lee and colleagues also knew from earlier work that dynein’s motor and tail parts inhibit or mask each other while moving along the microtubule, so no accidental interactions can take place. When the microtubule-guided dynein reaches the cortex and is ready to offload, it unmasks.

What have been completely hidden up to now are the events occurring between the microtubule ride and anchoring in the cell membrane. “This is a long-standing mystery,” Lee says. “We could see the masked dynein traveling at the tips of the microtubules, but no one had ever seen it delivered to the cortex.”

To trick dynein into revealing the steps in offloading, Lee and Markus engineered an 11-nanometer-long peptide spacer roughly equal to the motor section’s diameter. Like a bolster pillow slipped between two halves of a clam shell, it increases the space between the motor and the cargo-attaching tail but still allows the parts to stay physically connected. The researchers then used a conventional fluorescence microscope to observe each part’s separate activity with the spacer in place.

The setup worked better than they dared to hope. The mutants (those with an engineered peptide spacer) retained normal motor activity and allowed an enhanced view of offloading. Specifically, Lee says, “With that little forced physical distance between the motor and tail, we expected that both parts would react independently with respect to microtubule tips and the offloading sites, which is what we observed.”

“What we didn’t expect,” he continues, “is the ability to actually observe the delivery process. It was a complete surprise and a eureka moment for us to witness a hypothesis supported by direct evidence for the first time. Now we know how it occurs.”

The research team conducted further experiments to compare mutant with normal dynein under a Total Internal Reflection Fluorescence (TIRF) microscope, allowing them to visualize single dynein molecule behavior, Lee points out. These confirm that the elegantly designed peptide spacer disrupted just a single variable, its deployment in the cell, and did not globally disrupt the motor chemical activity.

Overall, results clearly show microtubule-mediated delivery is tightly controlled by a masking mechanism within the dynein molecule, Lee says, which now leads to a lot more questions. His team is already working on at least two: What molecule is doing the un-masking in the various microtubule-mediated polarization processes? And, once offloaded from the microtubule tip, how is the motor “turned on” at the cortex?

Link to journal article and video: http://www.cell.com/developmental-cell/abstract/S1534-5807%2811%2900162-6

Wei-Lih Lee
413-545-2944
wlee@bio.umass.edu

Wei-Lih Lee | Newswise Science News
Further information:
http://www.umass.edu

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>