Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Biologists Capture Cell’s Elusive ‘Motor’ on Videotape

In basic research with far-reaching impact, cell biologists Wei-Lih Lee and Steven Markus report in an article released today in Developmental Cell, with videos, that they have solved one of the fundamental questions in stem cell division: How dynein, the cell’s two-part, nano-scale “mitotic motor,” positions itself to direct the dividing process.

Their experiments can be likened to restoring never-before-seen footage to a classic film. What’s more, Lee says that footage is crucial to the plot and helps to explain the entire production.

Further, because the same polarization processes as those Lee and colleagues observed in budding yeast occur during asymmetric division of analogous human stem cells, the significance of this discovery is enormous. It should advance understanding of such serious neurological disorders as human lissencephaly, a rare brain formation disorder resulting in a “smooth” brain without folds and grooves, he adds.

In neurons, dynein’s major role is to carry waste products from the nerve terminal to the cell body. If this transport goes awry, neurons degenerate, leading to such diseases as Alzheimer’s and ALS. “Our discovery solves a huge mystery about how dynein works during asymmetric cell divisions, such as those in stem cells, and confirms to us that the regulation we see for yeast dynein is common to mammalian dynein,” Lee says.

In non-neurons, such as dividing stem cells, dynein performs dozens of division-related processes, so many in fact that it’s said to “promiscuously” associate with many different cellular cargoes, Lee adds. He and Markus, with undergraduate Jesse Punch, are known for their previous discoveries of how dynein controls the early steps. They belong to the Morrill Motor & Mitosis group in the UMass Amherst biology department.

As they explain, asymmetric division in stem cells is specialized for generating different cell types that will develop into specific tissues such as skin, heart and kidney. Non-stem cell division is simpler and usually symmetrical.

Dynein, the transport-directing two-part motor and cargo molecule, controls the first steps in asymmetric division, aligning and orienting the chromosome-separating spindle apparatus. When the cell is about to divide, dynein rides at the tips of track-like microtubules to a spot in the outer cell periphery, known as the cortex. Dynein’s tail end binds and offloads the motor to the cortex, anchoring the molecule to the membrane at a point opposite the spindle apparatus.

With this, dynein acts like a tent stake to hold and pull the spindle apparatus as it moves to a new location to form two unequal daughter cells. Lee and colleagues also knew from earlier work that dynein’s motor and tail parts inhibit or mask each other while moving along the microtubule, so no accidental interactions can take place. When the microtubule-guided dynein reaches the cortex and is ready to offload, it unmasks.

What have been completely hidden up to now are the events occurring between the microtubule ride and anchoring in the cell membrane. “This is a long-standing mystery,” Lee says. “We could see the masked dynein traveling at the tips of the microtubules, but no one had ever seen it delivered to the cortex.”

To trick dynein into revealing the steps in offloading, Lee and Markus engineered an 11-nanometer-long peptide spacer roughly equal to the motor section’s diameter. Like a bolster pillow slipped between two halves of a clam shell, it increases the space between the motor and the cargo-attaching tail but still allows the parts to stay physically connected. The researchers then used a conventional fluorescence microscope to observe each part’s separate activity with the spacer in place.

The setup worked better than they dared to hope. The mutants (those with an engineered peptide spacer) retained normal motor activity and allowed an enhanced view of offloading. Specifically, Lee says, “With that little forced physical distance between the motor and tail, we expected that both parts would react independently with respect to microtubule tips and the offloading sites, which is what we observed.”

“What we didn’t expect,” he continues, “is the ability to actually observe the delivery process. It was a complete surprise and a eureka moment for us to witness a hypothesis supported by direct evidence for the first time. Now we know how it occurs.”

The research team conducted further experiments to compare mutant with normal dynein under a Total Internal Reflection Fluorescence (TIRF) microscope, allowing them to visualize single dynein molecule behavior, Lee points out. These confirm that the elegantly designed peptide spacer disrupted just a single variable, its deployment in the cell, and did not globally disrupt the motor chemical activity.

Overall, results clearly show microtubule-mediated delivery is tightly controlled by a masking mechanism within the dynein molecule, Lee says, which now leads to a lot more questions. His team is already working on at least two: What molecule is doing the un-masking in the various microtubule-mediated polarization processes? And, once offloaded from the microtubule tip, how is the motor “turned on” at the cortex?

Link to journal article and video:

Wei-Lih Lee

Wei-Lih Lee | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>