Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Biologist Illuminates Unique World of Cave Creatures

They are dark, sometimes forbidding landscapes molded by volcanic eruptions or subterranean streams, but caves are also home to a host of creatures strangely adapted to the underworld.

Many of these organisms are pale, furtive and multi-legged. Some lack eyes or other light-sensing organs altogether. Others, like bats and cave crickets, roost in caves by day and forage in the outer world at night.

Steven Taylor, a macro-invertebrate biologist with the Illinois Natural History Survey at the University of Illinois, has spent more than two decades plumbing the mysteries of cave life. With the help of a handful of other specialists in cave biology, he is documenting invertebrate life in the limestone caves of Arkansas, Missouri, Texas and southern Illinois; in Lava Beds National Monument in California; and in mountainside caves in Great Basin National Park in Nevada.

(Click here to see an audio slide show related to this research.)

The work has its glories and its indignities. Taylor has searched among the stalagtites of a tour cave in Great Basin; rappelled through thick mats of spiders – “daddy longlegs” – clogging a cave entrance in central Texas; explored lava tubes in the Galapagos Islands; and collected millipedes, spiders, pseudoscorpions and other creatures making their living – directly or indirectly – from fungi or bacteria growing on bat or cricket guano on cave floors.

“I’ve even had a cave maggot named after me,” he said. (Megacilia taylori is a phorid fly that often frequents caves; its larval form is the maggot.)

The work requires much preparation, a talent for squeezing through tight places and a willingness to go into the blackness armed with no less than three flashlights.

“In a cave, there’s no light and literally once you get away from the entrance twilight zone you can wave your hand in front of your face and it’s like somebody severed your optic nerves,” Taylor said. “There’s nothing.”

Because there is no sunlight, “cave systems are low energy environments,” he said. “The primary energy source is debris that’s fallen or washed into a cave or is brought in by organisms or things that wander in or can’t find their way out and die.”

Leaf litter and guano are at the base of the cave food chain, he said.

“Fungi and bacteria grow on that, then millipedes and springtails (tiny, mite-sized bugs) graze on that,” he said. “And then there are the larger organisms, spiders and pseudoscorpions, that feed on the springtails.”

There are also aquatic amphipods: pale, multi-appendaged (and often blind) crustaceans that swim and feed on debris in the water and are themselves consumed by (sometimes eyeless) aquatic salamanders.

Taylor and his colleagues are limited by the size of the underground passages they can squeeze through. But the animals they study penetrate much deeper into their subterranean worlds. Tiny fissures, the result of geologic events or the flow of groundwater, extend far into the rock around a cave, Taylor said.

“The cave is just a window into this underground environment and we’re just looking at a corner of the population,” he said.

And while some cave animals do go back and forth between the subterranean and surface worlds, many species would not survive more than a few minutes on the surface. This is true particularly in the west, where hot, arid conditions would quickly dehydrate them.

Caves are like islands, Taylor said: The animals that live in them are completely cut off from other populations of related organisms. Like other island creatures, cave animals have adapted in unique ways to their isolated habitats. This makes them rarities, and as a result some are listed as threatened or endangered species.

Taylor’s research is revealing how dependent cave creatures are on the health of the surface environment. In 2003, for example, he and his associates used radio-tracking devices to follow the movements of cave crickets on their night-crawling adventures on a military base in central Texas. Cave crickets are a keystone species for the life of a cave. They forage above ground and bring all that collected surface energy (in the form of guano, eggs or dead crickets) back with them, feeding many other cave dwellers.

The researchers found that the crickets foraged in a wide territory around the cave, with some individuals ranging over 100 meters from the cave entrance.

In a survey of nine Texas caves, Taylor found that those surrounded by development – parking lots, apartment buildings or other hard surfaces – had very little life inside. Only a handful of cave crickets and other creatures hung on in these caves, while in similar caves with a lot of undisturbed land around them, he found large, healthy communities of cave crickets and other organisms.

In future studies, Taylor and his colleagues hope to explore the microbial life of caves, to see how the whole cave ecosystem contributes to the health of its individual constituents. Such studies may begin to explain the spread of a fungal disease, white nose syndrome, that is killing bats in eastern North America.

Caves are receptacles for anything that washes – or falls – into them, Taylor said, so they are susceptible to pollution, drought, disease or other changes that occur first on the surface.

“In a sense, a cave is kind of a microcosm of all the problems we have in the whole globe,” he said. “You have this little, finite hole and all these things living in it. Whatever we do affects them.”

Editor’s note: To reach Steven Taylor, call 217-714-2871;

Diana Yates | University of Illinois
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>