Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologist Illuminates Unique World of Cave Creatures

02.12.2010
They are dark, sometimes forbidding landscapes molded by volcanic eruptions or subterranean streams, but caves are also home to a host of creatures strangely adapted to the underworld.

Many of these organisms are pale, furtive and multi-legged. Some lack eyes or other light-sensing organs altogether. Others, like bats and cave crickets, roost in caves by day and forage in the outer world at night.

Steven Taylor, a macro-invertebrate biologist with the Illinois Natural History Survey at the University of Illinois, has spent more than two decades plumbing the mysteries of cave life. With the help of a handful of other specialists in cave biology, he is documenting invertebrate life in the limestone caves of Arkansas, Missouri, Texas and southern Illinois; in Lava Beds National Monument in California; and in mountainside caves in Great Basin National Park in Nevada.

(Click here to see an audio slide show related to this research.)

The work has its glories and its indignities. Taylor has searched among the stalagtites of a tour cave in Great Basin; rappelled through thick mats of spiders – “daddy longlegs” – clogging a cave entrance in central Texas; explored lava tubes in the Galapagos Islands; and collected millipedes, spiders, pseudoscorpions and other creatures making their living – directly or indirectly – from fungi or bacteria growing on bat or cricket guano on cave floors.

“I’ve even had a cave maggot named after me,” he said. (Megacilia taylori is a phorid fly that often frequents caves; its larval form is the maggot.)

The work requires much preparation, a talent for squeezing through tight places and a willingness to go into the blackness armed with no less than three flashlights.

“In a cave, there’s no light and literally once you get away from the entrance twilight zone you can wave your hand in front of your face and it’s like somebody severed your optic nerves,” Taylor said. “There’s nothing.”

Because there is no sunlight, “cave systems are low energy environments,” he said. “The primary energy source is debris that’s fallen or washed into a cave or is brought in by organisms or things that wander in or can’t find their way out and die.”

Leaf litter and guano are at the base of the cave food chain, he said.

“Fungi and bacteria grow on that, then millipedes and springtails (tiny, mite-sized bugs) graze on that,” he said. “And then there are the larger organisms, spiders and pseudoscorpions, that feed on the springtails.”

There are also aquatic amphipods: pale, multi-appendaged (and often blind) crustaceans that swim and feed on debris in the water and are themselves consumed by (sometimes eyeless) aquatic salamanders.

Taylor and his colleagues are limited by the size of the underground passages they can squeeze through. But the animals they study penetrate much deeper into their subterranean worlds. Tiny fissures, the result of geologic events or the flow of groundwater, extend far into the rock around a cave, Taylor said.

“The cave is just a window into this underground environment and we’re just looking at a corner of the population,” he said.

And while some cave animals do go back and forth between the subterranean and surface worlds, many species would not survive more than a few minutes on the surface. This is true particularly in the west, where hot, arid conditions would quickly dehydrate them.

Caves are like islands, Taylor said: The animals that live in them are completely cut off from other populations of related organisms. Like other island creatures, cave animals have adapted in unique ways to their isolated habitats. This makes them rarities, and as a result some are listed as threatened or endangered species.

Taylor’s research is revealing how dependent cave creatures are on the health of the surface environment. In 2003, for example, he and his associates used radio-tracking devices to follow the movements of cave crickets on their night-crawling adventures on a military base in central Texas. Cave crickets are a keystone species for the life of a cave. They forage above ground and bring all that collected surface energy (in the form of guano, eggs or dead crickets) back with them, feeding many other cave dwellers.

The researchers found that the crickets foraged in a wide territory around the cave, with some individuals ranging over 100 meters from the cave entrance.

In a survey of nine Texas caves, Taylor found that those surrounded by development – parking lots, apartment buildings or other hard surfaces – had very little life inside. Only a handful of cave crickets and other creatures hung on in these caves, while in similar caves with a lot of undisturbed land around them, he found large, healthy communities of cave crickets and other organisms.

In future studies, Taylor and his colleagues hope to explore the microbial life of caves, to see how the whole cave ecosystem contributes to the health of its individual constituents. Such studies may begin to explain the spread of a fungal disease, white nose syndrome, that is killing bats in eastern North America.

Caves are receptacles for anything that washes – or falls – into them, Taylor said, so they are susceptible to pollution, drought, disease or other changes that occur first on the surface.

“In a sense, a cave is kind of a microcosm of all the problems we have in the whole globe,” he said. “You have this little, finite hole and all these things living in it. Whatever we do affects them.”

Editor’s note: To reach Steven Taylor, call 217-714-2871;
e-mail sjtaylor@illinois.edu.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>