Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biological wires carry electricity thanks to special amino acids

12.03.2013
Slender bacterial nanowires require certain key amino acids in order to conduct electricity, according to a study to be published in mBio®, the online open-access journal of the American Society for Microbiology, on Tuesday, March 12.

In nature, the bacterium Geobacter sulfurreducens uses these nanowires, called pili, to transport electrons to remote iron particles or other microbes, but the benefits of these wires can also be harnessed by humans for use in fuel cells or bioelectronics.

The study in mBio® reveals that a core of aromatic amino acids are required to turn these hair-like appendages into functioning electron-carrying biological wires.

"It's the aromatic amino acids that make it a wire," says lead author Derek Lovley of the University of Massachusetts, Amherst. Lovley and his colleagues removed the pivotal amino acids from the pili and replaced them with smaller, non-aromatic amino acids. Without these key components, Lovley says, the pili are nothing more than protein strings. "We showed it's not good enough to just make the string - you've got to make a wire," says Lovley.

G. sulfurreducens "breathes" by removing electrons from organic materials and funneling them to iron oxides or to other microorganisms, much the way humans pull electrons out of organic molecules in food and dump them on oxygen. The bacteria use their pili to reach out to iron oxides or other microbes, transferring the "waste" electrons along the structure to the destination. Geobacter's pili are only 3-5 nanometers wide, but they can be 20 micrometers long, many times longer than the cell itself.

Trafficking in electrons is how all living things breathe, but it is normally carried out by discrete proteins or other molecules that act like containers for shuttling electrons from one place to another. Lovley says earlier results showed the pili in G. sulfurreducens possess metallic-like conductivity, the ability to carry electrons along a continuous structure, a controversial finding in biology.

To investigate how pili accomplish this singular feat, Lovley says they looked to non-biological organic materials that can conduct electricity. "In those synthetic materials, it's aromatic compounds that are responsible for the conductivity. We hypothesized that maybe it's similar in the Geobacter pili. In this case, it would be aromatic amino acids." Aromatic compounds have a highly stable ring-shaped structure made of carbon atoms.

Turning to the pili, Lovley says his group looked for aromatic amino acids in the parts of the pili proteins that would most likely contribute to the conductivity. Using genetic techniques, they developed a strain of Geobacter that makes pili that lack aromatic amino acids in these key regions, then they tested whether these pili could still conduct electricity. They could not. Removing the aromatic amino acids was a bit like taking the copper out of a plastic-covered electrical wire: no copper means no current, and all you're left with is a string.

Removing aromatic amino acids from the pili prevents the bacteria from reducing iron, too, says Lovley, an important point because it adds further proof that Geobacter uses its pili as nanowires for carrying electrons to support respiration.

Metal reducers like Geobacter show a lot of promise for use in fuel cells, says Lovley, and by feeding electrons to the microbes that produce the methane, they're an important component of anaerobic digesters that produce methane gas from waste products. Understanding how they shuttle their electrons around and how to optimize the way the pili function could lead to better technologies.

Moving forward, Lovley says his own lab plans to explore the possibilities of biological nanowires, exploring how to make them more or less conductive.

mBio® is an open access online journal published by the American Society for Microbiology to make microbiology research broadly accessible. The focus of the journal is on rapid publication of cutting-edge research spanning the entire spectrum of microbiology and related fields. It can be found online at http://mBio.asm.org.

The American Society for Microbiology is the largest single life science society, composed of over 39,000 scientists and health professionals. ASM's mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>