Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biological system with light switch: new findings from Graz

06.03.2017

For the first time ever, researchers at TU Graz and the Medical University of Graz have managed to functionally characterise the three-dimensional interaction between red-light receptors and enzymatic effectors. The results, with implications for optogenetics, have been published in Science Advances.

The aim of optogenetics is to control genetically modified cells using light. A team of Graz scientists led by Andreas Winkler from the Institute of Biochemistry at TU Graz have set a milestone in the future development of novel red-light regulated optogenetic tools for targeted cell stimulation.


Schematic representation of the illumination of the sensor domain of a photo-receptor and the molecular propagation of the light signal to the effector (in red on the right-hand edge of the image).

© TU Graz/IBC

For the first time ever, they were able to observe molecular principles of sensor-effector coupling in the full-length structure of a red-light responsive protein and describe detailed mechanisms of signal transmission over long distances at a molecular level. The results of the research have been published in the open access journal Science Advances.

Helix as light switch

To survive, cells and organisms have to adapt to new environmental conditions. This is the job of “protein building blocks” which interact with each other in different ways, thus creating cellular networks which allow adaptations to be made to changed environments. The sensors or “receptors” of external stimulation, such as light, are at least in part coupled to specific effectors in order to specifically activate or inhibit cellular signal molecules depending on need.

The Graz research group, which comprises not only researchers from TU Graz but also scientists from the Medical University of Graz, presents molecular details of a red-light photo-receptor, involved in the production of a central bacterial messenger molecule, and describes the structure of a full-length light-receptor together with its enzymatic effector for the first time. The architecture and composition of the linker element connecting the sensor and effector is very important in light regulation.

TU Graz biochemist Andreas Winkler, head of the research group: “By using a combination of x-ray structural analysis and hydrogen-deuterium exchange, by which the structural dynamics and conformational changes can be analysed, we managed to better understand the functional characteristics of this helical coupling element. We were able to show that illuminating the sensor with red light resulted in a rotation-like change in the coiled coil linker region, which in turn effects the enzymatic activity of the neighbouring effector.” The Graz researchers were thus able to determine structural details of a red-light regulated full-length system and describe molecular mechanisms of signal transduction.

Towards a rational design of proteins

The research contributes to better understanding the modularity of naturally occurring protein domains and being able to develop new optogenetic tools. Diverse combinations of different sensor modules are found in nature, such as red-light sensors, blue-light sensors and pH sensors – sometimes with identical and sometimes different effectors.

From this, the researchers conclude that there are molecular similarities in signal transduction and therefore that rational and completely arbitrary combinations of sensors and effectors which do not occur in nature are conceivable. Andreas Winkler:

“We are currently limited to naturally occurring systems to a great extent in the use of directly regulated enzymatic functionalities. The long-term aim is to generate new light-regulated systems which can overcome the limitations of nature and which would be of great interest for different applications in optogenetics.”

This project is anchored in the Field of Expertise “Human & Biotechnology”, one of five research foci of TU Graz. The researchers involved are also members of BioTechMed-Graz, a joint project of TU Graz, the Medical University of Graz and the University of Graz.

Contact:
Andreas WINKLER
Ass Prof. Dipl.-Ing. Dr.techn.
Institut of Biochemistra
Graz Universtiy of Technology
Tel.: +43 316 873 6457
E-Mail: andreas.winkler@tugraz.at

Weitere Informationen:

http://advances.sciencemag.org/content/3/3/e1602498
http://www.biochemistry.tugraz.at/
http://mbbc.medunigraz.at/
https://biotechmedgraz.at

Barbara Gigler | Technische Universität Graz

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>