Biological link between stress, anxiety and depression identified for the first time

The study also reveals a small molecule inhibitor developed by Ferguson, which may provide a new and better way to treat anxiety, depression and other related disorders. The findings are published online in the journal Nature Neuroscience.

Ferguson, Ana Magalhaes and their colleagues used a behavioural mouse model and a series of molecular experiments to reveal the connection pathway and to test the new inhibitor. “Our findings suggest there may be an entire new generation drugs and drug targets that can be used to selectively target depression, and therefore treat it more effectively, ” says Ferguson, the director of the Molecular Brain Research Group at Robarts, and a professor in the Department of Physiology & Pharmacology at Western's Schulich School of Medicine & Dentistry. “We've gone from mechanism to mouse, and the next step is to see whether or not we can take the inhibitor we developed, and turn it into a pharmaceutical agent.”

The research was conducted in collaboration with Hymie Anisman at Carleton University, and funded through the Canadian Institutes of Health Research (CIHR). “According to the World Health Organization, depression, anxiety and other related mood disorders now share the dubious distinction of being the most prevalent causes of chronic illness,” says Anthony Phillips, the scientific director of the CIHR Institute of Neurosciences, Mental Health and Addiction. “Using the power of molecular biology, Stephen Ferguson and colleagues provide novel insights that may be the key to improving the lives of so many individuals coping with these forms of mental ill health.”

The linking mechanism in the study involves the interaction between corticotropin releasing factor receptor 1 (CRFR1) and specific types of serotonin receptors (5-HTRs). While no one has been able to connect these two receptors on a molecular level, the study reveals that CRFR1 works to increase the number of 5-HTRs on cell surfaces in the brain, which can cause abnormal brain signaling. Since CRFR1 activation leads to anxiety in response to stress, and 5-HTRs lead to depression, the research shows how stress, anxiety and depression pathways connect through distinct processes in the brain. Most importantly, the inhibitor developed by the Ferguson lab blocks 5-HTRs in the pathway to combat anxious behaviour, and potentially depression, in mice.

While major depressive disorder often occurs together with anxiety disorder in patients, the causes for both are strongly linked to stressful experiences. Stressful experiences can also make the symptoms of anxiety and depression more severe. By discovering and then blocking a pathway responsible for the link between stress, anxiety and depression, Ferguson not only provides the first biological evidence for a connection, but he also pioneers the development of a potential drug for more effective treatment.

Media Contact

Kathy Wallis EurekAlert!

More Information:

http://www.uwo.ca

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors