Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biological link established between tumors and depression

19.05.2009
Animal models may help explain mood changes in cancer patients

In a study that could help explain the connections between depression and cancer, researchers at the University of Chicago have used an animal model to find, for the first time, a biological link between tumors and negative mood changes.

The team determined that substances associated with depression are produced in increased quantities by tumors and are transmitted to the brain.

Additionally, pathways that normally moderate the impact of depression-causing substances are disrupted when a tumor develops.

The research further showed that tumors induce changes in gene expression in the hippocampus, the portion of the brain that regulates emotion. Although researchers have long known that depression is a common outcome for people diagnosed with cancer, they had not known if it was brought on by a patient learning of the diagnosis or the result of treatments such as chemotherapy. Now a third source may have been identified.

"Our research shows that two types of tumor-induced molecules, one secreted by the immune system and another by the stress axis, may be responsible," said Leah Pyter, a postdoctoral fellow and lead author of a paper, "Peripheral Tumors Induce Depressive-like Behaviors and Cytokine Production and Alter Hypothalamic-Pituitary-Andrenal Axis Regulation," which is published in the current issue of the Proceedings of the National Academy of Sciences.

"Both of these substances have been implicated in depression, but neither has been examined over time frames and magnitudes that are characteristic of chronic diseases such as cancer," she said.

For their research, the team conducted a series of tests on about 100 rats, some of whom had cancer to determine their behavioral responses in tests of emotional state.

"Rats are commonly used to test drugs that are being studied for potential human benefits, such as treating depression," said Brian Prendergast, Associate Professor of Psychology at the University of Chicago, and the senior author on the study. "In this case, examining behavioral responses to tumors in non-human animals is particularly useful because the rats have no awareness of the disease, and thus their behavioral changes were likely the result of purely biological factors."

The team used tests commonly used in testing anti-depressants on rats and found that the rats with tumors became less motivated to escape when submitted to a swimming test, a condition that is similar to depression in humans. The rats with tumors also were less eager to drink sugar water, a substance that usually attracts the appetites of healthy rats.

Further tests revealed that the rats with tumors had increased levels of cytokines in their blood and in the hippocampus when compared with healthy rats. Cytokines are produced by the immune system, and an increase in cytokines has been linked to depression.

The team also found that stress hormone production also was altered in rats with tumors. The rats with tumors also had dampened production of the stress hormone corticosterone. The hormone helps regulate the impact of cytokines and reducing its production therefore increases the impact of cytokines.

The project was supported by an American Cancer Society fellowship, an NIH grant and a grant from the Brian Research Foundation.

William Harms | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>