Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why the Biological Clock? Penn Study Says Aging Reduces Centromere Cohesion, Disrupts Reproduction

09.09.2010
University of Pennsylvania biologists studying human reproduction have identified what is likely the major contributing factor to the maternal age-associated increase in aneuploidy, the term for an abnormal number of chromosomes during reproductive cell division.

Using naturally aging mouse models, researchers showed that this basic fact of reproductive life is most likely caused by weakened chromosome cohesion. Older oocytes, or egg cells, have dramatically reduced amounts of a protein, REC8, that is essential for chromosomes to segregate correctly during the process that forms an egg. Mistakes in this process can create chromosomal abnormalities like Down syndrome.

Richard Schultz, associate dean for the natural sciences and the Charles and William L. Day Distinguished Professor of Biology in Penn’s School of Arts and Sciences, and Michael Lampson, assistant professor of biology, found that kinetochores — the protein structures that mark the site where a chromosome pair is split during cell division — are farther apart in eggs obtained from aged mice, resulting in reduced centromere cohesion. Because cohesion in these cells is established during fetal development, and must remain functional until meiotic resumption in adult life (up to ~50 years later in humans or 15 months in mice), defective cohesion is a good candidate for a process that might fail with increasing maternal age.

Researchers demonstrated that about 90 percent of age-related aneuploidies are best explained by weakened centromere cohesion. Together, these results show that the maternal age-associated increase in aneuploidy is often due to a failure to effectively replace cohesin proteins lost during aging.

“Despite the well understood nature of the issue — popularly called the biological clock — the molecular mechanisms that underpin this phenomenon have never been fully understood,” Schultz said. “Even now at the molecular level, there is no clear explanation for the loss of cohesion, in large part because almost nothing is known about how cohesion is normally maintained during the long prophase arrest in mammalian oocytes. Outstanding questions, such as the stability of cohesin complexes on chromosomes during arrest and whether new cohesins load and mature during the arrest, are now under investigation.”

To test whether cohesion defects led to the observed aneuploidies, scientists monitored chromosome segregation during the initial stages of separation, called the anaphase, in live mouse oocytes, counting the chromosomes in the resulting metaphase II eggs.

Researchers arrived at this hypothesis by identifying mRNAs that differed in oocytes of old and young mice, which suggested the spindle assembly checkpoint, kinetochore function and spindle assembly as processes that might become defective with age. Results of experiments addressed to test these possibilities suggested that they were unlikely causes. During these studies, however, the scientists noticed that sister kinetochores are farther apart in metaphase II eggs from older mice at 16 to 19 months of age compared to eggs from young mice of 6 to 14 weeks of age, a finding that drew their attention to explore reduced cohesion as a primary source for age-related aneuploidy.

The study, appearing in the journal Current Biology, was conducted by Schultz, Lampson, Teresa Chiang, Francesca E. Duncan and Karen Schindler of the Department of Biology in Penn’s School of Arts and Sciences.

The study was funded by the National Institutes of Health and a Searle Scholar Award to Lampson.

Jordan Reese | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>