Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bioinformatic reconstruction of global networks provides shortcuts to protein functions

15.06.2009
Researchers at the Stockholm Bioinformatics Center in Sweden have developed bioinformatic methods for reconstructing global networks of proteins and genes that interact with each other functionally.

Eight different types of large-scale genomic, proteomic, and functional genetic data have been combined in the largest reconstructions ever of networks in nine different species. The work is published in the June issue of the journal Genome Research, and the networks are available to researchers and others via a Web-based database.

The database, developed by Professor Erik Sonnhammer's research team, is called FunCoup, which refers to the functional link between genes/proteins. This link can vary in nature - either direct physical contact, members of a complex, or members of a certain biological process. Mapping biological processes in the form of networks can be seen as the next step following the identification of all genes and the basic classification of their biochemical functions. Each gene and protein exercises its function through interactions with other molecules, usually other proteins or genes. These are the interactions that FunCoup can predict.

"The advantage of combining different types of data is that they complement each other. All forms of experiments have specific weaknesses, but by using a combination strategy, we can obtain an overall picture with better coverage," says Erik Sonnhammer.

Even though FunCoup is based on data that are publically available, in practice it is not possible for an individual researcher to process the data the way SBC does.

"For instance, we calculate the correlation in protein expression across hundreds of experiments between all pairs of proteins in a species. There are some 200 million pairs in human alone. Huge amounts of correlations and other indicators are analyzed statistically in order to translate a raw signal into a unit of functional coupling. A unique feature of FunCoup is that the type of link is predicted, for example, that 'member of complex' may be more probable than 'direct physical contact.' What's more, the networks in several species are analyzed simultaneously in order to determine whether the process is captured in model organisms," says Erik Sonnhammer.

The article in the journal Genome Research shows, for instance, how FunCoup predicts new genes in Alzheimer's, Parkinson's, and cancer.

"We hope that many scientists will discover additional relevant genes in FunCoup for their research. Biomedical researchers are often familiar with only a small number of genes that are important in a disease, and they put all their resources into these. They should more often broaden their perspectives to include other genes that are close by in the network," says Erik Sonnhammer.

The database, together with tools for analyzing networks surrounding any particular genes, is available at http://FunCoup.sbc.su.se/

Further information:
Erik Sonnhammer, professor of bioinformatics, Stockholm Bioinformatics Center, Stockholm University, phone: +46 (0)8-55378567; cell phone: +46 (0)70-5586395, e-mail Erik.Sonnhammer@sbc.su.se, home page http://sonnhammer.sbc.su.se

Maria Sandqvist | idw
Further information:
http://FunCoup.sbc.su.se/
http://sonnhammer.sbc.su.se

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>