Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bioinformatic reconstruction of global networks provides shortcuts to protein functions

15.06.2009
Researchers at the Stockholm Bioinformatics Center in Sweden have developed bioinformatic methods for reconstructing global networks of proteins and genes that interact with each other functionally.

Eight different types of large-scale genomic, proteomic, and functional genetic data have been combined in the largest reconstructions ever of networks in nine different species. The work is published in the June issue of the journal Genome Research, and the networks are available to researchers and others via a Web-based database.

The database, developed by Professor Erik Sonnhammer's research team, is called FunCoup, which refers to the functional link between genes/proteins. This link can vary in nature - either direct physical contact, members of a complex, or members of a certain biological process. Mapping biological processes in the form of networks can be seen as the next step following the identification of all genes and the basic classification of their biochemical functions. Each gene and protein exercises its function through interactions with other molecules, usually other proteins or genes. These are the interactions that FunCoup can predict.

"The advantage of combining different types of data is that they complement each other. All forms of experiments have specific weaknesses, but by using a combination strategy, we can obtain an overall picture with better coverage," says Erik Sonnhammer.

Even though FunCoup is based on data that are publically available, in practice it is not possible for an individual researcher to process the data the way SBC does.

"For instance, we calculate the correlation in protein expression across hundreds of experiments between all pairs of proteins in a species. There are some 200 million pairs in human alone. Huge amounts of correlations and other indicators are analyzed statistically in order to translate a raw signal into a unit of functional coupling. A unique feature of FunCoup is that the type of link is predicted, for example, that 'member of complex' may be more probable than 'direct physical contact.' What's more, the networks in several species are analyzed simultaneously in order to determine whether the process is captured in model organisms," says Erik Sonnhammer.

The article in the journal Genome Research shows, for instance, how FunCoup predicts new genes in Alzheimer's, Parkinson's, and cancer.

"We hope that many scientists will discover additional relevant genes in FunCoup for their research. Biomedical researchers are often familiar with only a small number of genes that are important in a disease, and they put all their resources into these. They should more often broaden their perspectives to include other genes that are close by in the network," says Erik Sonnhammer.

The database, together with tools for analyzing networks surrounding any particular genes, is available at http://FunCoup.sbc.su.se/

Further information:
Erik Sonnhammer, professor of bioinformatics, Stockholm Bioinformatics Center, Stockholm University, phone: +46 (0)8-55378567; cell phone: +46 (0)70-5586395, e-mail Erik.Sonnhammer@sbc.su.se, home page http://sonnhammer.sbc.su.se

Maria Sandqvist | idw
Further information:
http://FunCoup.sbc.su.se/
http://sonnhammer.sbc.su.se

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>