Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bioinformatic reconstruction of global networks provides shortcuts to protein functions

15.06.2009
Researchers at the Stockholm Bioinformatics Center in Sweden have developed bioinformatic methods for reconstructing global networks of proteins and genes that interact with each other functionally.

Eight different types of large-scale genomic, proteomic, and functional genetic data have been combined in the largest reconstructions ever of networks in nine different species. The work is published in the June issue of the journal Genome Research, and the networks are available to researchers and others via a Web-based database.

The database, developed by Professor Erik Sonnhammer's research team, is called FunCoup, which refers to the functional link between genes/proteins. This link can vary in nature - either direct physical contact, members of a complex, or members of a certain biological process. Mapping biological processes in the form of networks can be seen as the next step following the identification of all genes and the basic classification of their biochemical functions. Each gene and protein exercises its function through interactions with other molecules, usually other proteins or genes. These are the interactions that FunCoup can predict.

"The advantage of combining different types of data is that they complement each other. All forms of experiments have specific weaknesses, but by using a combination strategy, we can obtain an overall picture with better coverage," says Erik Sonnhammer.

Even though FunCoup is based on data that are publically available, in practice it is not possible for an individual researcher to process the data the way SBC does.

"For instance, we calculate the correlation in protein expression across hundreds of experiments between all pairs of proteins in a species. There are some 200 million pairs in human alone. Huge amounts of correlations and other indicators are analyzed statistically in order to translate a raw signal into a unit of functional coupling. A unique feature of FunCoup is that the type of link is predicted, for example, that 'member of complex' may be more probable than 'direct physical contact.' What's more, the networks in several species are analyzed simultaneously in order to determine whether the process is captured in model organisms," says Erik Sonnhammer.

The article in the journal Genome Research shows, for instance, how FunCoup predicts new genes in Alzheimer's, Parkinson's, and cancer.

"We hope that many scientists will discover additional relevant genes in FunCoup for their research. Biomedical researchers are often familiar with only a small number of genes that are important in a disease, and they put all their resources into these. They should more often broaden their perspectives to include other genes that are close by in the network," says Erik Sonnhammer.

The database, together with tools for analyzing networks surrounding any particular genes, is available at http://FunCoup.sbc.su.se/

Further information:
Erik Sonnhammer, professor of bioinformatics, Stockholm Bioinformatics Center, Stockholm University, phone: +46 (0)8-55378567; cell phone: +46 (0)70-5586395, e-mail Erik.Sonnhammer@sbc.su.se, home page http://sonnhammer.sbc.su.se

Maria Sandqvist | idw
Further information:
http://FunCoup.sbc.su.se/
http://sonnhammer.sbc.su.se

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>