Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biogenic Insecticides decoded: Scientists from Bochum and Freiburg present their results in Science

01.03.2010
Researchers elucidate the Mechanism of Action of Tc Proteins

Infective entomopathogenic nematodes are minute worms that penetrate insect larva and serve as transport vehicles for the bacterium Photorhabdus luminescens, which lives in their alimentary tract.

After larva penetration the nematodes release these bacteria, which secrete toxins that compromise the immune system of the larvae. Thus the nematodes are used together with the bacterium as insecticide. The exact mechanism of action of the Photorhabdus luminescens had been unknown to date.

Together with colleagues from Freiburg, Prof. em. Hans Georg Mannherz (Medical Faculty of the RUB and the Max-Planck-Institute for Molecular Physiology, Dortmund) has now managed to elucidate this process. Specific subunits of the bacterial toxin complex that inhibit essential defence reactions of immune cells are of instrumental significance. Some of the bacterial infectious toxins bear resemblances to toxins of human pathogenic bacteria, e.g. the bacteria that cause pulmonary and bubonic plaque may make use of similar mechanisms. The researchers have published their findings in the current volume of SCIENCE.

Worms transport the bacteria to the target

Photorhabdus luminescens lives in symbiosis with nematodes. The minute worms penetrate insect larvae via natural openings and then more or less "regurgitate" the bacteria. Bacterial toxins produced by this light-emitting bacterium kill the insect larvae thus creating a large food reservoir for the proliferation of nematodes and bacteria.

Two subunits of the toxin complex are biologically active

Photorhabdus luminescens produces diverse toxins that generate large toxin complexes (Tc proteins). The biologically active complex consists of the three components TcA, TcB and TcC. So far the mechanism of action of these toxins has been unknown. Together with the Dow AgroSciences (USA) and Prof. em. Mannherz and research scientists in Freiburg, working under the auspices of Prof. Klaus Aktories and Prof. Gudula Schmidt, investigated the impact of the toxins on insect and mammalian cells. They were able to demonstrate that the biological activity is located in the TcC components TccC3 and TccC5. The two toxin components are enzymes that inhibit the essential defence reactions of immune cells, e.g. the phagocytosis of bacteria.

Toxins function in two ways

The toxins act on the target cells of the insect larvae in two different ways. TccC3 modifies the cytoskeletal protein actin (ADP-ribosylation) to such an extent that it is no longer controlled by the regulator protein thymosin beta 4. This results in a significant polymerisation of the actin. The second toxin, TccC5, changes so-called Rho proteins, i.e. the switch proteins responsible for the regulation of the actin cytoskeleton. Normally these regulators are switched on and off within the cell. TccC5 modifies the switch by blocking the switching-off procedure. Subsequently the permanently active Rho protein enhances the polymerisation of actin. Together the two toxins lead to a strong aggregation and even clustering of the actin cytoskeleton, which is incompatible with the normal cellular function or immune defence reaction. TcA, which forms pores in host cells, is necessary to enable the toxins TccC3 and TccC5 to enter the insect cells. The toxins probably infiltrate the interior of the cells through these pores.

Decisive knowledge for the comprehension of Tc proteins

Tc Proteins have also been identified in human pathogenic bacteria such as Yersinia pseudotuberculosis and Yersinia pestis. As Prof. Mannherz pointed out, the clarification of the molecular mechanism of prototypical Tc proteins is thus of fundamental importance for the comprehension of other Tc proteins from insecticidal and human pathogenic bacteria.

Title

Alexander E. Lang, Gudula Schmidt, Andreas Schlosser, Timothy D. Hey, Ignacio M. Larrinua, Joel J. Sheets, Hans G. Mannherz and Klaus Aktories: "Photorhabdus luminescens Toxins ADP-Ribosylate Actin and RhoA to Force Actin Clustering." In: Science 26 February 2010 327: 1139-1142 [DOI: 10.1126/science.1184557]

Further Information

Prof. em. Hans Georg Mannherz, Abteilung für Anatomie und Embryologie der Ruhr-Universität Bochum und Abteilung für Physikalische Biochemie des Max-Planck-Instituts für Molekulare Physiologie, Dortmund, Germany

E-Mail: hans.g.mannherz@rub.de

Editor: Meike Drießen

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de/

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>