Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biogenic Insecticides decoded: Scientists from Bochum and Freiburg present their results in Science

01.03.2010
Researchers elucidate the Mechanism of Action of Tc Proteins

Infective entomopathogenic nematodes are minute worms that penetrate insect larva and serve as transport vehicles for the bacterium Photorhabdus luminescens, which lives in their alimentary tract.

After larva penetration the nematodes release these bacteria, which secrete toxins that compromise the immune system of the larvae. Thus the nematodes are used together with the bacterium as insecticide. The exact mechanism of action of the Photorhabdus luminescens had been unknown to date.

Together with colleagues from Freiburg, Prof. em. Hans Georg Mannherz (Medical Faculty of the RUB and the Max-Planck-Institute for Molecular Physiology, Dortmund) has now managed to elucidate this process. Specific subunits of the bacterial toxin complex that inhibit essential defence reactions of immune cells are of instrumental significance. Some of the bacterial infectious toxins bear resemblances to toxins of human pathogenic bacteria, e.g. the bacteria that cause pulmonary and bubonic plaque may make use of similar mechanisms. The researchers have published their findings in the current volume of SCIENCE.

Worms transport the bacteria to the target

Photorhabdus luminescens lives in symbiosis with nematodes. The minute worms penetrate insect larvae via natural openings and then more or less "regurgitate" the bacteria. Bacterial toxins produced by this light-emitting bacterium kill the insect larvae thus creating a large food reservoir for the proliferation of nematodes and bacteria.

Two subunits of the toxin complex are biologically active

Photorhabdus luminescens produces diverse toxins that generate large toxin complexes (Tc proteins). The biologically active complex consists of the three components TcA, TcB and TcC. So far the mechanism of action of these toxins has been unknown. Together with the Dow AgroSciences (USA) and Prof. em. Mannherz and research scientists in Freiburg, working under the auspices of Prof. Klaus Aktories and Prof. Gudula Schmidt, investigated the impact of the toxins on insect and mammalian cells. They were able to demonstrate that the biological activity is located in the TcC components TccC3 and TccC5. The two toxin components are enzymes that inhibit the essential defence reactions of immune cells, e.g. the phagocytosis of bacteria.

Toxins function in two ways

The toxins act on the target cells of the insect larvae in two different ways. TccC3 modifies the cytoskeletal protein actin (ADP-ribosylation) to such an extent that it is no longer controlled by the regulator protein thymosin beta 4. This results in a significant polymerisation of the actin. The second toxin, TccC5, changes so-called Rho proteins, i.e. the switch proteins responsible for the regulation of the actin cytoskeleton. Normally these regulators are switched on and off within the cell. TccC5 modifies the switch by blocking the switching-off procedure. Subsequently the permanently active Rho protein enhances the polymerisation of actin. Together the two toxins lead to a strong aggregation and even clustering of the actin cytoskeleton, which is incompatible with the normal cellular function or immune defence reaction. TcA, which forms pores in host cells, is necessary to enable the toxins TccC3 and TccC5 to enter the insect cells. The toxins probably infiltrate the interior of the cells through these pores.

Decisive knowledge for the comprehension of Tc proteins

Tc Proteins have also been identified in human pathogenic bacteria such as Yersinia pseudotuberculosis and Yersinia pestis. As Prof. Mannherz pointed out, the clarification of the molecular mechanism of prototypical Tc proteins is thus of fundamental importance for the comprehension of other Tc proteins from insecticidal and human pathogenic bacteria.

Title

Alexander E. Lang, Gudula Schmidt, Andreas Schlosser, Timothy D. Hey, Ignacio M. Larrinua, Joel J. Sheets, Hans G. Mannherz and Klaus Aktories: "Photorhabdus luminescens Toxins ADP-Ribosylate Actin and RhoA to Force Actin Clustering." In: Science 26 February 2010 327: 1139-1142 [DOI: 10.1126/science.1184557]

Further Information

Prof. em. Hans Georg Mannherz, Abteilung für Anatomie und Embryologie der Ruhr-Universität Bochum und Abteilung für Physikalische Biochemie des Max-Planck-Instituts für Molekulare Physiologie, Dortmund, Germany

E-Mail: hans.g.mannherz@rub.de

Editor: Meike Drießen

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de/

More articles from Life Sciences:

nachricht Kidney tumor: Genetic trigger discovered
18.06.2018 | Julius-Maximilians-Universität Würzburg

nachricht New type of photosynthesis discovered
18.06.2018 | Imperial College London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>