Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biofuels from the sea

04.07.2011
Seaweed may prove a viable future biofuel -- especially if harvested in summer

The use of kelp (Laminaria digitata) could provide an important alternative to terrestrial grown biofuels; however the suitability of its chemical composition varies on a seasonal basis. Harvesting the kelp in July when carbohydrate levels are at their highest would ensure optimal sugar release for biofuel production.

"The storage carbohydrate and soluble sugars get converted into ethanol in the fermentation process, so we need as much as possible," explains Dr. Jessica Adams, a lead researcher at Aberystwyth University. "Metals can inhibit the yeast too so we also want these to be as low as possible."

Collecting monthly samples of kelp from the Welsh coast researchers used chemical analysis to assess the seasonal variability. Their results, which will be presented at the Society for Experimental Biology Annual Conference in Glasgow on the 4th of July, showed that the best month for biofuel harvest was in July when the kelp contained the highest proportions of carbohydrate and the lowest metal content.

Kelp can be converted to biofuels in different ways including fermentation or anaerobic digestion producing ethanol and methane or pyrolysis, (a method of heating the fuel without oxygen) which produces bio-oil. The chemical composition of the seaweed is important to both of these processes.

Research into biofuels has focused on terrestrial plants; however these have the serious drawback of the conflict between using land to grow food or fuel. Marine ecosystems are an untapped resource that account for over 50% of global biomass and seaweeds themselves are capable of producing more biomass per square metre than fast growing terrestrial plants such as sugar cane.

"Seaweed biofuel could be very important in future energy production," says Dr. Adams. "What biofuels provide that other renewables such as wind power cannot is a storable energy source that we can use when the wind drops." Future work will improve the viability of the process by identifying and extracting high value substances, such as pigments and phenols, before the rest of the seaweed is used to produce biofuel.

Daisy Brickhill | EurekAlert!
Further information:
http://www.sebiology.org/

Further reports about: Biofuels Experimental Biology chemical composition seaweed

More articles from Life Sciences:

nachricht Oestrogen regulates pathological changes of bones via bone lining cells
28.07.2017 | Veterinärmedizinische Universität Wien

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>