Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bioengineers put human hearts on a chip to aid drug screening

09.03.2015

When University of California, Berkeley, bioengineers say they are holding their hearts in the palms of their hands, they are not talking about emotional vulnerability.


Shown is human heart tissue, derived from adult stem cells, before and after exposure to isoproterenol, a drug used to treat bradycardia (slow heart rate) and other heart problems. The beat rate visibly increased after 30 minutes of exposure to the drug.

Credit: Video by Dr. Anurag Mathur/Healy Lab

Instead, the research team led by bioengineering professor Kevin Healy is presenting a network of pulsating cardiac muscle cells housed in an inch-long silicone device that effectively models human heart tissue, and they have demonstrated the viability of this system as a drug-screening tool by testing it with cardiovascular medications.

This organ-on-a-chip, reported in a study to be published Monday, March 9, in the journal Scientific Reports, represents a major step forward in the development of accurate, faster methods of testing for drug toxicity. The project is funded through the Tissue Chip for Drug Screening Initiative, an interagency collaboration launched by the National Institutes of Health to develop 3-D human tissue chips that model the structure and function of human organs.

"Ultimately, these chips could replace the use of animals to screen drugs for safety and efficacy," said Healy.

The study authors noted a high failure rate associated with the use of nonhuman animal models to predict human reactions to new drugs. Much of this is due to fundamental differences in biology between species, the researchers explained. For instance, the ion channels through which heart cells conduct electrical currents can vary in both number and type between humans and other animals.

"Many cardiovascular drugs target those channels, so these differences often result in inefficient and costly experiments that do not provide accurate answers about the toxicity of a drug in humans," said Healy. "It takes about $5 billion on average to develop a drug, and 60 percent of that figure comes from upfront costs in the research and development phase. Using a well-designed model of a human organ could significantly cut the cost and time of bringing a new drug to market."

The heart cells were derived from human-induced pluripotent stem cells, the adult stem cells that can be coaxed to become many different types of tissue.

The researchers designed their cardiac microphysiological system, or heart-on-a-chip, so that its 3-D structure would be comparable to the geometry and spacing of connective tissue fiber in a human heart. They added the differentiated human heart cells into the loading area, a process that Healy likened to passengers boarding a subway train at rush hour. The system's confined geometry helps align the cells in multiple layers and in a single direction.

Microfluidic channels on either side of the cell area serve as models for blood vessels, mimicking the exchange by diffusion of nutrients and drugs with human tissue. In the future, this setup could also allow researchers to monitor the removal of metabolic waste products from the cells.

"This system is not a simple cell culture where tissue is being bathed in a static bath of liquid," said study lead author Anurag Mathur, a postdoctoral scholar in Healy's lab and a California Institute for Regenerative Medicine fellow. "We designed this system so that it is dynamic; it replicates how tissue in our bodies actually gets exposed to nutrients and drugs."

Within 24 hours after the heart cells were loaded into the chamber, they began beating on their own at a normal physiological rate of 55 to 80 beats per minute.

The researchers put the system to the test by monitoring the reaction of the heart cells to four well-known cardiovascular drugs: isoproterenol, E-4031, verapamil and metoprolol. They used changes in the heart tissue's beat rate to gauge the response to the compounds.

The baseline beat rate for the heart tissue consistently fell within 55 to 80 beats per minute, a range considered normal for adult humans. They found that the responses after exposure to the drugs were predictable. For example, after half an hour of exposure to isoproterenol, a drug used to treat bradycardia (slow heart rate), the beat rate of the heart tissue increased from 55 to 124 beats per minute.

The researchers noted that their heart-on-a-chip could be adapted to model human genetic diseases or to screen for an individual's reaction to drugs. They are also studying whether the system could be used to model multi-organ interactions. A standard tissue culture plate could potentially feature hundreds of microphysiological cell culture systems.

"Linking heart and liver tissue would allow us to determine whether a drug that initially works fine in the heart might later be metabolized by the liver in a way that would be toxic," said Healy.

The engineered heart tissue remained viable and functional over multiple weeks. Given that time, it could be used to test various drugs, Healy said.

Media Contact

Sarah Yang
scyang@berkeley.edu
510-643-7741

 @UCBerkeleyNews

http://www.berkeley.edu 

Sarah Yang | EurekAlert!

Further reports about: 3-D animals cardiac drugs geometry heart cells human tissue nutrients stem cells toxicity

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>