Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bioengineers Fill Holes in Cellular Self-Organization

08.10.2008
The chemical and biological aspects of cellular self-organization are well-studied; less well understood is how cell populations order themselves biomechanically – how their behavior and communication are affected by high density and physical proximity.

Bioengineers and physicists at the University of California San Diego, in a paper published in the current issue of the Proceedings of the National Academy of Sciences, have begun to address these fundamental questions.

The UC San Diego scientists focused their research on dense colonies of the rod-shaped bacteria Escherichia coli. By analyzing the spatial organization of the bacteria in a microfluidic chemostat – a kind of mini-circuit board for liquids rather than electrons – they found that growth and expansion of a dense colony of cells leads to a dynamic change from relative disorder to a remarkable re-orientation and alignment of the rod-like cells.

That finding, described in their paper “Biomechanical Ordering of Dense Cell Populations,” allowed them to develop a model of collective cell dynamics, and to use this model to “elucidate the mechanism of cell ordering, and quantify the relationship between the dynamics of cell proliferation and the spatial structure of the population.”

One of the authors, Lev S. Tsimring, at UC San Diego’s Institute of Nonlinear Science, explained the bioengineers’ use of bacteria to study the biomechanical ordering of cells.

“When environmental conditions are harsh, bacteria like to stick together. The most typical form of bacterial organization in nature is a biofilm: a dense quasi-two-dimensional colony of bacteria. Biofilms grow in and on living tissues, the surfaces of rocks and soils, and in aquatic environments,” he said, “but they’re also found in man-made systems and devices such as industrial piping and artificial implants. And bacteria are known to actively migrate toward surfaces and small cavities, where they form high-density colonies.”

At low densities, he said, bacteria and other cells communicate “remotely” by sending chemical signals – “chemotaxis” – but, as they aggregate and form dense communities, direct biomechanical contacts play a bigger and bigger role in how they organize themselves.

“Although previous studies have explored the complex signaling mechanisms in the early stages of biofilm formation,” Tsimring said, “the biomechanics of direct cellular contacts have received little attention. We focused, therefore, on the structure and dynamics of a growing two-dimensional colony of non-motile bacteria.”

His fellow researcher, Jeff Hasty, at the Institute for Nonlinear Science and UC San Diego’s Department of Bioengineering, said the team’s work provides a multiscale description of cell colony growth.

“Our results reveal how cell growth and colony expansion trigger the formation of the orientational order in the population,” Hasty said, “which, in turn, affects the mechanical and biochemical properties of the colony.”

The details of their research, the authors say, helps scientists understand how the local interaction of elementary components leads to collective behavior and the formation of a highly organized system.

Tsimring and Hasty collaborated with Scott Cookson, of the Department of Bioengineering, and Dmitri Volfson, now at Rosetta Inpharmatics LLC.

Funding for the research was provided by the National Institutes of Health, the National Science Foundation, and UC MEXUS-CONACYT.

Paul K. Mueller | Newswise Science News
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>