Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bioengineers Fill Holes in Cellular Self-Organization

08.10.2008
The chemical and biological aspects of cellular self-organization are well-studied; less well understood is how cell populations order themselves biomechanically – how their behavior and communication are affected by high density and physical proximity.

Bioengineers and physicists at the University of California San Diego, in a paper published in the current issue of the Proceedings of the National Academy of Sciences, have begun to address these fundamental questions.

The UC San Diego scientists focused their research on dense colonies of the rod-shaped bacteria Escherichia coli. By analyzing the spatial organization of the bacteria in a microfluidic chemostat – a kind of mini-circuit board for liquids rather than electrons – they found that growth and expansion of a dense colony of cells leads to a dynamic change from relative disorder to a remarkable re-orientation and alignment of the rod-like cells.

That finding, described in their paper “Biomechanical Ordering of Dense Cell Populations,” allowed them to develop a model of collective cell dynamics, and to use this model to “elucidate the mechanism of cell ordering, and quantify the relationship between the dynamics of cell proliferation and the spatial structure of the population.”

One of the authors, Lev S. Tsimring, at UC San Diego’s Institute of Nonlinear Science, explained the bioengineers’ use of bacteria to study the biomechanical ordering of cells.

“When environmental conditions are harsh, bacteria like to stick together. The most typical form of bacterial organization in nature is a biofilm: a dense quasi-two-dimensional colony of bacteria. Biofilms grow in and on living tissues, the surfaces of rocks and soils, and in aquatic environments,” he said, “but they’re also found in man-made systems and devices such as industrial piping and artificial implants. And bacteria are known to actively migrate toward surfaces and small cavities, where they form high-density colonies.”

At low densities, he said, bacteria and other cells communicate “remotely” by sending chemical signals – “chemotaxis” – but, as they aggregate and form dense communities, direct biomechanical contacts play a bigger and bigger role in how they organize themselves.

“Although previous studies have explored the complex signaling mechanisms in the early stages of biofilm formation,” Tsimring said, “the biomechanics of direct cellular contacts have received little attention. We focused, therefore, on the structure and dynamics of a growing two-dimensional colony of non-motile bacteria.”

His fellow researcher, Jeff Hasty, at the Institute for Nonlinear Science and UC San Diego’s Department of Bioengineering, said the team’s work provides a multiscale description of cell colony growth.

“Our results reveal how cell growth and colony expansion trigger the formation of the orientational order in the population,” Hasty said, “which, in turn, affects the mechanical and biochemical properties of the colony.”

The details of their research, the authors say, helps scientists understand how the local interaction of elementary components leads to collective behavior and the formation of a highly organized system.

Tsimring and Hasty collaborated with Scott Cookson, of the Department of Bioengineering, and Dmitri Volfson, now at Rosetta Inpharmatics LLC.

Funding for the research was provided by the National Institutes of Health, the National Science Foundation, and UC MEXUS-CONACYT.

Paul K. Mueller | Newswise Science News
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Bioluminescent worm found to have iron superpowers
15.12.2017 | University of California - San Diego

nachricht Computational strategies overcome obstacles in peptide therapeutics development
15.12.2017 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New technique could make captured carbon more valuable

15.12.2017 | Life Sciences

First-of-its-kind chemical oscillator offers new level of molecular control

15.12.2017 | Life Sciences

A chip for environmental and health monitoring

15.12.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>