Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bioengineers cut in half time needed to make high-tech flexible sensors


Bioengineers at the University of California, San Diego, have developed a method that cuts down by half the time needed to make high-tech flexible sensors for medical applications. The advance brings the sensors, which can be used to monitor vital signs and brain activity, one step closer to mass-market manufacturing.

The new fabrication process will allow bioengineers to broaden the reach of their research to more clinical settings. It also makes it possible to manufacture the sensors with a process similar to the printing press, said Todd Coleman, a bioengineering professor at the Jacobs School of Engineering at UC San Diego. Researchers describe their work in a recent issue of the journal Sensors.

A researcher works in the Nano3 cleanroom at the Qualcomm Institute at UC San Diego to manufacture the sensors. Full video of the process here:

Credit: Jacobs School of Engineering/UC San Diego

"A clinical need is what drove us to change our fabrication process," Coleman said.

Coleman's team at UC San Diego has been working in medical settings for four years. Their sensors have been used to monitor premature babies, pregnant women, patients in Intensive Care Units and patients suffering from sleep disorders.

Coleman and colleagues quickly found out that nurses wanted the sensors to come in a peel-and-stick form, like a medical-grade Band Aid. The medium on which the sensors were placed also needed to be FDA-approved.

The sensors' original fabrication process involved 10 steps--five of which had to take place in a clean room. Also, the steps to remove the sensors from the silicon wafer they're built on alone took anywhere from 10 to 20 minutes. And the sensors remained fragile and susceptible to rips and tears.

But what if you could use the adhesive properties of a Band Aid-like medium to help peel off the sensors from the silicon wafer easily and quickly? Wouldn't that make the process much simpler--and faster? That was the question that Dae Kang, a Jacobs School Ph.D. student in Coleman's research group, set out to answer. The result of his efforts is a process that comprises only six steps--three of them in the clean room. The steps that took 10 to 20 minutes before now take just 35 seconds.

Kang created a coating about 20 to 50 micrometers thick, made of a silicon-like material called an elastomer, to easily remove the sensors, made of gold and chromium, from the silicon wafer. This was tricky work. The coating had be sticky enough to allow researchers to build the sensors in the first place, but loose enough to allow them to peel off the wafer.

"It's a Goldilocks problem," Coleman said.

The new process doesn't require any chemical solvents. That means the sensors can be peeled off with any kind of adhesive, from scotch tape to a lint roller, as researchers demonstrated in the study.

Coleman's team also showed that the sensors could be fabricated on a curved, flexible film typically used to manufacture flexible printed circuits and the outside layer of spacesuits. Researchers were able to easily peel off the sensors from the curved film without compromising their functioning.

In order to make the sensors more like peel-off stickers, researchers essentially had to build the sensors upside down so that their functioning part would be exposed after they were removed from the wafer. This was key to allow for easy processing with a single peel-off step.

Researchers also demonstrated that the sensors they built with the new fabrication process were functional. They placed a sensor on a subject's forehead and hooked it up to an electroencephalography machine. The sensors were able to detect a special brain signal present only when the subject's eyes were closed--a classic electroencephalogram testing procedure. The researchers also demonstrated that these sensors are able to detect other electrical rhythms of the body, such as the heart's electrical activity detected during an electro-cardiogram or EKG.

Media Contact

Ioana Patringenaru


Ioana Patringenaru | EurekAlert!

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>