Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bioelectrochemical processes have the potential to one day replace petrochemistry

09.03.2015

Researchers at UFZ and the University of Queensland have found that the electrification of the white biotechnology is not merely a green dream, but an alternative to petrochemistry with realistic economical potential. Compared to classical sugar based bio-processes, bioelectrochemical processes promise improved yields, which could turn out to be a real game changer. The next generation of bio-production facilities may not only become more environmentally friendly, but also more economically competitive.

In contrast to the energy and fuel sectors that are influenced by government targets for green alternatives, the chemical industry is mainly driven by market mechanisms. Companies and consumers are generally not prepared to pay a green premium for products.


Bioreactor with upgrade kit for the bioelectrochemical synthesis

André Künzelmann/UFZ

This means that compared to classical petrochemical processes, bio-production of chemicals needs to be cheaper, or in case of comparable costs, offer added value for companies to take the risk of investment into a new production process.

Nevertheless, it is expected that the share of bio-derived‚ green’ chemicals will significantly rise over the next decade. This market is at the centre of the so called‚ ‘white biotechnology’, focussing on biotechnological processes for the production of industrial chemicals, which is distinct from medical (red) and plant (green) biotechnology.

In novel processes at lab-scale, fuels and chemicals can already be produced bio-electrochemically, using microbial synthesis driven by electricity and carbon sources.

However, achieving a broader electrification of white biotechnology is still a challenge, due to the inherently different optimal conditions for electrochemical and microbial metabolic reactions. The current knowledge gaps still require a systematic R&D effort before the technology can be introduced more broadly, as the researchers highlight in their study.

In order to better estimate the economic potential of the new technology, the researchers used the well-established bioprocess of Lysine production and analysed how the supply of electricity as a feed for the bacteria could change the economics of this process.

The scientists now compared the saving in raw materials costs, if the electricity would serve as a source of redox power, rather than sugar oxidation, so that all sugar could potentially be used to build the lysine molecules. Based on different electricity prices in the EU and the US, different scenarios had to be considered. Assuming current market prices for sucrose as the main feedstock and bulk electricity charges on the two continents it was estimated that the electrically enhanced production could save costs of between 8.4% and 18 % in the EU and the US, respectively.

“This does not even consider savings in downstream processing due to a reduced production of by-products, which is expected due to the better redox balance” Dr Krömer (UQ) said.
“If one speculates further and estimates savings over a ten year horizon for a typical 50000 t p.a. plant, one would save 30 Million US$ in the EU and 50 Million US$ in the US.” Dr Harnisch (UFZ) adds.

While this ignores the additional investment costs to enable the bio-electrochemistry, which can currently not be reliably estimated for large scale, this example nevertheless shows that bio-electrochemical production of chemicals can also become interesting from an economical point of view.

Bioelectrochemical technology is an approach with far reaching potential, which is supported by the fact that ChemSusChem, a journal devoted to sustainable chemistry, highlights the current study on its cover page.

Publication:
Harnisch, F., Rosa, L. F. M., Kracke, F., Virdis, B. and Krömer, J. O. (2014): Electrifying White Biotechnology: Engineering and Economic Potential of Electricity-Driven Bio-Production. ChemSusChem. doi: 10.1002/cssc.201402736 http://dx.doi.org/10.1002/cssc.201402736
The studies were funded by the German Ministry of Education and Research (BMBF) (BMBF-Initiative „Nächste Generation biotechnologischer Verfahren - Biotechnologie 2020+"), the Helmholtz Association (Young Investigators Group & Research Program Renewable Energie) and the University of Queensland.

Further information:
Dr. Falk Harnisch
Helmholtz Center of Environmental Research (UFZ), Department of Environmental Microbiology, Head of Research Group „Microbial Bioelectrocatalysis & Bioelectrotechnology“
Phone: +49-(0)341-235-1337
http://www.ufz.de/index.php?en=31006
or
Dr. Luis Filipe Morgado Rosa
Helmholtz Center of Environmental Research (UFZ), Department of Environmental Microbiology, Research Group „Microbial Bioelectrocatalysis & Bioelectrotechnology“
Telefon: +49-(0)341-235-1373
http://www.ufz.de/index.php?en=31835
and
Dr. Jens Krömer,
The University of Queensland
Centre for Microbial Electrochemical Systems (CEMES)
Phone: 07 3346 3222
E-mail: j.kromer@uq.edu.au.

or via
Tilo Arnhold, Susanne Hufe (UFZ press office)
Phone: +49-(0)341-235-1635, -1630
http://www.ufz.de/index.php?en=640

Further Link:
UFZ-Research Group „Microbial Bioelectrocatalysis & Bioelectrotechnology”
http://www.ufz.de/index.php?en=31005

In the Helmholtz Centre for Environmental Research (UFZ), scientists conduct research into the causes and consequences of far-reaching environmental changes. Their areas of study cover water resources, biodiversity, the consequences of climate change and possible adaptation strategies, environmental technologies and biotechnologies, bio-energy, the effects of chemicals in the environment and the way they influence health, modelling and social-scientific issues. Its guiding principle: Our research contributes to the sustainable use of natural resources and helps to provide long-term protection for these vital assets in the face of global change. The UFZ employs more than 1,100 staff at its sites in Leipzig, Halle and Magdeburg. It is funded by the federal government, Saxony and Saxony-Anhalt. http://www.ufz.de/

The Helmholtz Association contributes to solving major and urgent issues in society, science and industry through scientific excellence in six research areas: Energy, earth and environment, health, key technologies, structure of matter as well as aviation, aerospace and transportation. The Helmholtz Association is the largest scientific organisation in Germany, with 35,000 employees in 18 research centres and an annual budget of around €3.8 billion. Its work is carried out in the tradition of the great natural scientist Hermann von Helmholtz (1821-1894). http://www.helmholtz.de/

The Centre for Microbial Electrochemical Systems (CEMES) is a strategic initiative of the University of Queensland associated with the Advanced Water Management Centre (AWMC). CEMES is at the nexus of industrial and environmental biotechnology and aims at optimization of microbial processes through the manipulation of cellular redox balances with electricity.

Weitere Informationen:

http://www.ufz.de/index.php?en=33620

Susanne Hufe | UFZ News

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>