Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biodiversity itself begets a species cascade

13.02.2009
Biodiversity feeds on itself, researchers found, as evolving animals open niches for other new species. Such is the case, says a Michigan State University researcher, with a parasite found to be evolving in sequence with an emerging host insect in western Michigan apple trees.

A new species of fruit fly has evolved after changing its mating behavior to favor laying eggs on apples instead of its characteristic hawthorn tree fruit host, MSU entomologist James J. Smith and colleagues reported. As those flies became genetically different from the parent hawthorn fly, so did the parasitic wasps that prey on the flies’ larvae.

The team’s research is published as part of the cover story in the Feb. 6 issue of Science magazine, a top industry publication published by the American Association for the Advancement of Science.

The research comes to light, appropriately, as the world this week celebrates the bicentennial of the birth of Charles Darwin, the English naturalist who first described modern notions of speciation in “On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life.”

“It makes sense that biodiversity would beget biodiversity,” acknowledged Smith, who is an associate professor of biology in Lyman Briggs College, MSU’s interdisciplinary science undergraduate program, and in the MSU Department of Entomology.

“What is really difficult, though, is to find hard evidence that this is what has occurred or is occurring. That is one of the real strengths of this paper. The study has large sample sizes and analyzes these organisms at a relatively high number of chromosome positions, or genetic loci,” he said.

The idea that there are “speciation cascades” provides a new perspective to address some longstanding questions about the evolutionary process, he said.

“For example, why are there so many insect species? Speciation cascades provide one explanation for how a lot of species might be generated in a relatively short time period. In addition, it is not irrelevant that geographic barriers appear not to have been directly involved in species divergence in this case,” Smith said.

Evolutionary divergence, he explained, tends to be associated with geographic isolation.

If fruit flies don’t make an impressive example of speciation and environmental adaptation, the researchers noted, consider that more than half of all animals could be considered parasites in a broad sense, that plant-eating insects outnumber all other life forms and that one-fifth of all insects could be parasitic wasps. The conclusion, they wrote, is that “there is a world of opportunity for sequential speciation in nature.”

"Clues can be found right before us as we sit on our deck chairs barbecuing and drinking pop,” principal investigator Jeff Feder told Science. “All we have to do is open our eyes and we can see new life forms coming into being in that scraggly old apple tree in our backyard."

Feder is a University of Notre Dame biologist who did graduate research at MSU and is a longtime collaborator with Smith. Notre Dame graduate student Andrew Forbes was lead author for the study. Tom Powell, also from Notre Dame, and University of Florida entomologist Lukasz Stelinski also participated in the research, which was supported with National Science Foundation funding.

James J. Smith | EurekAlert!
Further information:
http://www.msu.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>