Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biodiversity itself begets a species cascade

13.02.2009
Biodiversity feeds on itself, researchers found, as evolving animals open niches for other new species. Such is the case, says a Michigan State University researcher, with a parasite found to be evolving in sequence with an emerging host insect in western Michigan apple trees.

A new species of fruit fly has evolved after changing its mating behavior to favor laying eggs on apples instead of its characteristic hawthorn tree fruit host, MSU entomologist James J. Smith and colleagues reported. As those flies became genetically different from the parent hawthorn fly, so did the parasitic wasps that prey on the flies’ larvae.

The team’s research is published as part of the cover story in the Feb. 6 issue of Science magazine, a top industry publication published by the American Association for the Advancement of Science.

The research comes to light, appropriately, as the world this week celebrates the bicentennial of the birth of Charles Darwin, the English naturalist who first described modern notions of speciation in “On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life.”

“It makes sense that biodiversity would beget biodiversity,” acknowledged Smith, who is an associate professor of biology in Lyman Briggs College, MSU’s interdisciplinary science undergraduate program, and in the MSU Department of Entomology.

“What is really difficult, though, is to find hard evidence that this is what has occurred or is occurring. That is one of the real strengths of this paper. The study has large sample sizes and analyzes these organisms at a relatively high number of chromosome positions, or genetic loci,” he said.

The idea that there are “speciation cascades” provides a new perspective to address some longstanding questions about the evolutionary process, he said.

“For example, why are there so many insect species? Speciation cascades provide one explanation for how a lot of species might be generated in a relatively short time period. In addition, it is not irrelevant that geographic barriers appear not to have been directly involved in species divergence in this case,” Smith said.

Evolutionary divergence, he explained, tends to be associated with geographic isolation.

If fruit flies don’t make an impressive example of speciation and environmental adaptation, the researchers noted, consider that more than half of all animals could be considered parasites in a broad sense, that plant-eating insects outnumber all other life forms and that one-fifth of all insects could be parasitic wasps. The conclusion, they wrote, is that “there is a world of opportunity for sequential speciation in nature.”

"Clues can be found right before us as we sit on our deck chairs barbecuing and drinking pop,” principal investigator Jeff Feder told Science. “All we have to do is open our eyes and we can see new life forms coming into being in that scraggly old apple tree in our backyard."

Feder is a University of Notre Dame biologist who did graduate research at MSU and is a longtime collaborator with Smith. Notre Dame graduate student Andrew Forbes was lead author for the study. Tom Powell, also from Notre Dame, and University of Florida entomologist Lukasz Stelinski also participated in the research, which was supported with National Science Foundation funding.

James J. Smith | EurekAlert!
Further information:
http://www.msu.edu

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>