Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biochemists Manipulate Fruit Flavor Enzymes

22.08.2008
Would you like a lemony watermelon? How about a strawberry-flavored banana? Biochemists at The University of Texas Medical School at Houston say the day may be coming when scientists will be able to fine tune enzymes responsible for flavors in fruits and vegetables. In addition, it could lead to environmentally-friendly pest control.

In the advance online publication of Nature on Aug. 20, UT Medical School Assistant Professor C.S. Raman, Ph.D., and his colleagues report that they were able to manipulate flavor enzymes found in a popular plant model, Arabidopsis thaliana, by genetic means. The enzymes—allene oxide synthase (AOS) and hydroperoxide lyase (HPL)—produce jasmonate (responsible for the unique scent of jasmine flowers) and green leaf volatiles (GLV) respectively. GLVs confer characteristic aromas to fruits and vegetables.

Green leaf volatiles and jasmonates emitted by plants also serve to ward off predators. “Mind you plants can’t run away from bugs and other pests. They need to deal with them. One of the things they do is to release volatile substances into the air so as to attract predators of the bugs,” Raman said.

“Genetic engineering/modification (GM) of green leaf volatile production holds significant potential towards formulating environmentally friendly pest-control strategies. It also has important implications for manipulating food flavor,” said Raman, the senior author. “For example, the aroma of virgin olive oil stems from the volatiles synthesized by olives. By modifying the activity of enzymes that generate these substances, it may be possible to alter the flavor of the resulting oils.”

According to Raman, “Our work shows how you can convert one enzyme to another and, more importantly, provides the needed information for modifying the GLV production in plants.” The scientists made 3-D images of the enzymes, which allowed them to make a small, but specific, genetic change in AOS, leading to the generation of HPL.

AOS and HPL are part of a super family of enzymes called cytochrome P450. P450 family enzymes are found in most bacteria and all known plants and animals. Although AOS or HPL are not found in humans, there are related P450 family members that help metabolize nearly half of the pharmaceuticals currently in use. In plants, AOS and HPL break down naturally-occurring, organic peroxides into GLV and jasmonate molecules. “Each flavor has a different chemical profile,” Raman said.

“A notable strength of this manuscript is the combined use of structural and evolutionary biology to draw new insights regarding enzyme function. These insights led to the striking demonstration that a single amino acid substitution converts one enzyme into another, thereby showing how a single point mutation can contribute to the evolution of different biosynthetic pathways. This begins to answer the long-standing question as to how the same starting molecule can be converted into different products by enzymes that look strikingly similar,” said Rodney E. Kellems, Ph.D., professor and chairman of the Department of Biochemistry & Molecular Biology at the UT Medical School at Houston.

The study dispels the earlier view that these flavor-producing enzymes are only found in plants, Raman said. “We have discovered that they are also present in marine animals, such as sea anemone and corals. However, we do not know what they do in these organisms."

The study is titled “Structural insights into the evolutionary paths of oxylipin biosynthetic enzymes.” The lead authors were Dong-Sun Lee, Ph.D., an assistant professor in the Department of Biochemistry & Molecular Biology at the UT Medical School at Houston, and Pierre Nioche, Ph.D., an assistant professor at the Université Paris Descartes. Mats Hamberg, M.D., Ph.D., professor of medical chemistry in the Division of Physiological Chemistry, Karolinska Institutet, Stockholm, Sweden, collaborated on the research.

The research is supported by Pew Charitable Trusts through a Pew Scholar Award, The Robert A. Welch Foundation, The National Institutes of Health, a Beginning Grant in Aid from the American Heart Association, and an INSERM Avenir Grant sponsored by La Fondation pour la Recherche Medicale.

Rob Cahill | Newswise Science News
Further information:
http://www.uthouston.edu/

More articles from Life Sciences:

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

nachricht Wintering ducks connect isolated wetlands by dispersing plant seeds
22.02.2017 | Utrecht University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>