Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biochemists Discover New Mechanism in Ribosome Formation

02.11.2012
Hitching a ride into the nucleus: Protein controls synchronised transport of ribosome factors

A new mechanism in the formation of ribosomes has been discovered by researchers from the Heidelberg University Biochemistry Center. In an interdisciplinary approach, the Heidelberg scientists, along with colleagues from Switzerland and Japan, describe a heretofore uncharacterised protein that plays a specific role in ribosome assembly in eukaryotes, organisms whose cells contain a cell nucleus.

This protein makes sure that specific factors required for ribosome synthesis are transported together, like hitchhikers, into the nucleus to the site of assembly. The results of this research were published in “Science”.

Ribosomes, the protein factories of the cell, are macromolecular complexes of ribonucleic acids (RNA) and ribosomal proteins (r-proteins) that are organised in a highly complicated three-dimensional nanostructure. Correct synthesis of ribosomes is critical for the division of all cells and is a process that follows strict rules.

In eukaryotes, new ribosomes are formed predominantly in the cell nucleus. Therefore, the r-proteins needed for ribosome formation must travel from the cytoplasm of the cell to a site in the nucleus where the ribosomes are assembled. Until recently it was not clear whether r-proteins that have a similar function and form functional clusters on the ribosome structure are also co-transported into the nucleus.

The researchers have now found a protein that coordinates the co-transport of certain r-proteins in functional clusters into the cell nucleus. This factor is called Symportin1, for synchronised import. “Symportin1 synchronises the import of both the Rpl5 and Rpl11 r-proteins into the cell nucleus and supports their integration into the growing ribosome structure”, explains Prof. Dr. Irmgard Sinning of the Heidelberg University Biochemistry Center (BZH). “It employs a familiar logistical concept from every day life, like picking up a hitchhiker or sharing a taxi with someone headed for the same destination”, says Dr. Gert Bange of the BZH, lead author of the study together with Dr. Dieter Kressler (now of Fribourg University).

The researchers from Heidelberg University and the University of Fribourg (Switzerland) collaborated closely with colleagues from Osaka University in Japan on the research. “The combination of different methods ranging from traditional cell biology to new biophysical approaches was crucial in developing the detailed picture of this previously unknown biological mechanism”, emphasises Prof. Dr. Ed Hurt, also of the BZH. The study took advantage of the Biochemistry Center’s crystallisation platform and the research received support from the Cluster of Excellence “CellNetworks” of Heidelberg University.

Original publication:
D. Kressler, G. Bange, Y. Ogawa, G. Stjepanovic, B. Bradatsch, D. Pratte, S. Amlacher, D. Strauß, Y. Yoneda, J. Kata-hira, I. Sinning, E. Hurt: Synchronizing Nuclear Import of Ribosomal Proteins with Ribosome Assembly, Science (2 November 2012), Vol. 338 no. 6107, 666-671, doi: 10.1126/science.1226960
Contact:
Prof. Dr. Irmgard Sinning / Prof. Dr. Ed Hurt
Heidelberg University Biochemistry Center
Phone: +49 (0)6221 54-4781, -4173
Irmi.sinning@bzh.uni-heidelberg.de
ed.hurt@bzh.uni-heidelberg.de
Communications and Marketing
Press Office
phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de

More articles from Life Sciences:

nachricht An evolutionary heads-up – The brain size advantage
22.05.2015 | Veterinärmedizinische Universität Wien

nachricht Endocrine disrupting chemicals in baby teethers
21.05.2015 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>