Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biochemist uses computer models to study protein involved with cancer, aging and chronic disease

14.04.2011
A new biophysical and biochemical study may lead to better understanding of how structural flexibility controls the interaction of a protein that is closely involved with cancer, aging and other chronic diseases -- thereby facilitating future development of better therapeutic strategies, according to a Kansas State University biochemist.

Jianhan Chen, an assistant professor of biochemistry, was one of the researchers on a collaborative project that took a combined computational and experimental approach to understand how protein p21 functions as a versatile regulator of cell division. Their latest findings, "Intrinsic disorder mediates the diverse regulatory functions of the Cdk inhibitor p21," were published in a recent edition of Nature Chemical Biology.

The study used computer simulation to rationalize results from biochemical and biophysical experiments, and provided further insights that would guide future investigations, Chen said. In this case, the focus is human protein p21 and its ability to function as an inhibitor of normal cell growth.

The protein has been shown to be an intrinsically disordered protein. This means it lacks a well-defined three-dimensional structure, characteristics that, until roughly a decade ago, were thought to be necessary for the protein to function.

"For a long time it was believed that proteins must fold to function and it was hard to imagine how an unfolded protein could play a role in crucial cellular areas," Chen said. "What researchers before me found was that by lacking a stable structure, this actually turned out to be really, really important to how these proteins function."

Along with being an intrinsically disordered protein, p21 is a versatile cyclin-dependent kinase, or Cdk, inhibitor -- meaning it adapts to and inhibits a range of Cdk-cyclin complexes that regulate eukaryote cell division. It also has been connected to cancer and aging. For example, Chen said p21 is a principal trans-activation target of the p53 tumor suppressor protein and contributes to p53-dependent tumor suppression.

"This protein is extremely challenging to study. It's highly dynamic and it's heterogeneous," Chen said. Because of this, mechanistic studies of intrinsically disordered proteins like p21 have been limited. Experiment alone is not sufficient and computer modeling is necessary to provide important missing details, he said. A tight integration of both could lead to a precise understanding of how structural flexibility influences function of p21 and other intrinsically disordered proteins.

"For me this is one of the most interesting IDPs," Chen said. "I'm a theorist and I want to use this system to understand the principles of how this type of proteins can perform their functions. Even though they are disordered, they are not random; there is no chaos. They still have some type of residual structures and certain features which allow function to be controlled in a precise way, and I want to understand the underlying mechanism of how this occurs."

Chen is continuing work with p21 and other small proteins that regulate cell cycles.

In 2010 Chen received more than $670,000 as a CAREER Award from the National Science Foundation. CAREER is the foundation's most prestigious award for junior faculty to support early development activities of teach-scholars who most effectively integrate research and education within the context of the organization's mission. He and his lab focus on computer modeling to understand how biomolecules perform their biological functions.

Jianhan Chen | EurekAlert!
Further information:
http://www.k-state.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>