Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biochemical signature predicts progression to Alzheimer's disease

14.12.2011
New potential avenues for early disease detection

A study led by Research Professor Matej Orešiè from VTT Technical Research Centre of Finland suggests that Alzheimer's disease is preceded by a molecular signature indicative of hypoxia and up-regulated pentose phosphate pathway.

This indicator can be analysed as a simple biochemical assay from a serum sample months or even years before the first symptoms of the disease occur. In a healthcare setting, the application of such an assay could therefore complement the neurocognitive assessment by the medical doctor and could be applied to identify the at-risk patients in need of further comprehensive follow-up.

Alzheimer's disease (AD) is a growing challenge to the health care systems and economies of developed countries with millions of patients suffering from this disease and increasing numbers of new cases diagnosed annually with the increasing ageing of populations.

The progression of Alzheimer's disease (AD) is gradual, with the subclinical stage of illness believed to span several decades. The pre-dementia stage, also termed mild cognitive impairment (MCI), is characterised by subtle symptoms that may affect complex daily activities. MCI is considered as a transition phase between normal aging and AD. MCI confers an increased risk of developing AD, although the state is heterogeneous with several possible outcomes, including even improvement back to normal cognition.

What are the molecular changes and processes which define those MCI patients who are at high risk of developing AD? The teams led by Matej Orešiè from VTT and Hilkka Soininen from the University of Eastern Finland set out to address this question, and the results were published on 13th Dec. 2011 in Translational Psychiatry.

The team used metabolomics, a high-throughput method for detecting small metabolites, to produce profiles of the serum metabolites associated with progression to AD. Serum samples were collected at baseline when the patients were diagnosed with AD, MCI, or identified as healthy controls. 52 out of 143 MCI patients progressed to AD during the follow-up period of 27 months on average. A molecular signature comprising three metabolites measured at baseline was derived which was predictive of progression to AD. Furthermore, analysis of data in the context of metabolic pathways revealed that pentose phosphate pathway was associated with progression to AD, also implicating the role of hypoxia and oxidative stress as early disease processes.

The unique study setting allowed the researchers to identify the patients diagnosed with MCI at baseline who later progressed to AD and to derive the molecular signature which can identify such patients at baseline.

Though there is no current therapy to prevent AD, early disease detection is vital both for delaying the onset of the disease through pharmacological treatment and/or lifestyle changes and for assessing the efficacy of potential AD therapeutic agents. The elucidation of early metabolic pathways associated with progression to Alzheimer's disease may also help in identifying new therapeutic avenues.

This study was supported by the project "From patient data to personalised healthcare in Alzheimer's disease" (PredictAD) which was supported by the European Commission under the 7th Framework Programme.

Reference: M. Orešiè, T. Hyötyläinen, S.-K. Herukka, M. Sysi-Aho, I. Mattila, T. Seppänan-Laakso, V. Julkunen, P. V. Gopalacharyulu, M. Hallikainen, J. Koikkalainen, M. Kivipelto, S. Helisalmi, J. Lötjönen, H. Soininen, Metabolome in progression to Alzheimer's disease, Translational Psychiatry, 13th December 2011.

Further information:

VTT Technical Research Centre of Finland
Matej Orešiè, Research Professor
tel. +358 20 722 4491, matej.oresic@vtt.fi
University of Eastern Finland
Hilkka Soininen, Professor
tel. +358 40 5735749, hilkka.soininen@uku.fi

Matej Oresic | EurekAlert!
Further information:
http://www.vtt.fi

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

Guardians of the Gate

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>