Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New biochemical changes found in children with ADHD

05.12.2011
A new study at Örebro University in Sweden shows that children with ADHD have nearly 50 percent less of a protein that is important for attention and learning. The finding may mean that there are other biochemical disturbances in the brains of individuals with ADHD than was previously believed.

“This indicates that several signal substances are implicated in ADHD and that in the future this could pave the way for other drugs than those in use today,” says Jessica Johansson, who is presenting her research findings in a dissertation in medicine at Örebro University.

Jessica Johansson belongs to the Experimental Neuropsychiatric research group that has mapped part of the biochemical changes in cells that underlie ADHD and other neuropsychiatric functional impairments and disorders. Head of the group is Nikolaos Venizelos.

“I usually say that I’m doing research on mental diseases and functional impairments at the cellular level. Many of these are assumed to be the consequence of excessively low levels of important signal substances in the brain, so cell biochemical analyses help us understand the processes that cause the changes.”

For the brain to be able to produce the substances required to send signals, it is dependent on various amino acids being transported to the brain. When it comes to ADHD, Jessica Johansson has studied the transport of amino acids tyrosine and tryptophan, which the brain uses in producing the signal substances dopamine, noradrenaline, and serotonin.

By analyzing a certain type of connective tissue cells’ (so-called fibroblasts’) capacity to transport these substances, the researchers can also reach conclusions about how well the transport into the brain is working. The findings from these studies show that the transport of tryptophan is lower in children with ADHD, compared with children without that diagnosis.

“This probably means that the brain produces less serotonin. Thus far the focus has mainly been on the signal substances dopamine and noradrenaline in the medical treatment of ADHD. But if low levels of serotonin are also a contributing factor, other drugs may be necessary for successful treatment.”

The head of the research group Nikolaos Venizelos says that the most unexpected discovery in the study, however, was the dramatically reduced amount of the so-called acetylcholine receptor in children with ADHD says. It functions as a receptor protein for the signal substance acetylcholine and is therefore necessary for key signals involving concentration and learning functions, for example. Drugs that reinforce the acetylcholine effect are used in treating Alzheimer’s patients, for instance.

Jessica Johansson has also studied biochemical changes in bipolar disorder (previously called manic-depressive disorder), as there are parallels between ADHD and bipolar disorder. Here it was instead the transport of the amino acid tyrosine that was disturbed, which indicates a reduced production of the signal substances dopamine and noradrenaline.

“Since we have previously seen the same thing in patients with schizophrenia, it’s an indication that both disorders have the same deviant amino acid transport, which might be caused by a shared genetic variant.”

For more information, please contact: Jessica Johansson cell phone: +46 (0)707-31 01 43, jessica.johansson@oru.se or

Assoc Professor Nikolaos Venizelos, cell phone: + 46 (0)702 55 85 20, nikolaos.venizelos@oru.se.

Ingrid Lundegårdh | idw
Further information:
http://www.vr.se

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>