Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New biochemical changes found in children with ADHD

05.12.2011
A new study at Örebro University in Sweden shows that children with ADHD have nearly 50 percent less of a protein that is important for attention and learning. The finding may mean that there are other biochemical disturbances in the brains of individuals with ADHD than was previously believed.

“This indicates that several signal substances are implicated in ADHD and that in the future this could pave the way for other drugs than those in use today,” says Jessica Johansson, who is presenting her research findings in a dissertation in medicine at Örebro University.

Jessica Johansson belongs to the Experimental Neuropsychiatric research group that has mapped part of the biochemical changes in cells that underlie ADHD and other neuropsychiatric functional impairments and disorders. Head of the group is Nikolaos Venizelos.

“I usually say that I’m doing research on mental diseases and functional impairments at the cellular level. Many of these are assumed to be the consequence of excessively low levels of important signal substances in the brain, so cell biochemical analyses help us understand the processes that cause the changes.”

For the brain to be able to produce the substances required to send signals, it is dependent on various amino acids being transported to the brain. When it comes to ADHD, Jessica Johansson has studied the transport of amino acids tyrosine and tryptophan, which the brain uses in producing the signal substances dopamine, noradrenaline, and serotonin.

By analyzing a certain type of connective tissue cells’ (so-called fibroblasts’) capacity to transport these substances, the researchers can also reach conclusions about how well the transport into the brain is working. The findings from these studies show that the transport of tryptophan is lower in children with ADHD, compared with children without that diagnosis.

“This probably means that the brain produces less serotonin. Thus far the focus has mainly been on the signal substances dopamine and noradrenaline in the medical treatment of ADHD. But if low levels of serotonin are also a contributing factor, other drugs may be necessary for successful treatment.”

The head of the research group Nikolaos Venizelos says that the most unexpected discovery in the study, however, was the dramatically reduced amount of the so-called acetylcholine receptor in children with ADHD says. It functions as a receptor protein for the signal substance acetylcholine and is therefore necessary for key signals involving concentration and learning functions, for example. Drugs that reinforce the acetylcholine effect are used in treating Alzheimer’s patients, for instance.

Jessica Johansson has also studied biochemical changes in bipolar disorder (previously called manic-depressive disorder), as there are parallels between ADHD and bipolar disorder. Here it was instead the transport of the amino acid tyrosine that was disturbed, which indicates a reduced production of the signal substances dopamine and noradrenaline.

“Since we have previously seen the same thing in patients with schizophrenia, it’s an indication that both disorders have the same deviant amino acid transport, which might be caused by a shared genetic variant.”

For more information, please contact: Jessica Johansson cell phone: +46 (0)707-31 01 43, jessica.johansson@oru.se or

Assoc Professor Nikolaos Venizelos, cell phone: + 46 (0)702 55 85 20, nikolaos.venizelos@oru.se.

Ingrid Lundegårdh | idw
Further information:
http://www.vr.se

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>