Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bio-Inspired Robotic Device Could Aid Ankle-Foot Rehabilitation

22.01.2014
A soft, wearable device that mimics the muscles, tendons and ligaments of the lower leg could aid in the rehabilitation of patients with ankle-foot disorders such as drop foot, said Yong-Lae Park, an assistant professor of robotics at Carnegie Mellon University.

Park, working with collaborators at Harvard University, the University of Southern California, MIT and BioSensics, developed an active orthotic device using soft plastics and composite materials, instead of a rigid exoskeleton.



The soft materials, combined with pneumatic artificial muscles (PAMs), lightweight sensors and advanced control software, made it possible for the robotic device to achieve natural motions in the ankle.

The researchers reported on the development in the journal Bioinspiration & Biomimetics.

Park, who did the work while a post-doctoral researcher at Harvard’s Wyss Institute for Biologically Inspired Engineering, said the same approach could be used to create rehabilitative devices for other joints of the body or even to create soft exoskeletons that increase the strength of the wearer.

The robotic device would be suitable for aiding people with neuromuscular disorders of the foot and ankle associated with cerebral palsy, amyotrophic lateral sclerosis, multiple sclerosis or stroke. These gait disorders include drop foot, in which the forefoot drops because of weakness or paralysis, and equinus, in which the upward bending motion of the ankle is limited. Conventional passive ankle braces can improve gait, but long-term use can lead to muscle atrophy because of disuse.

Active, powered devices can improve function and also help re-educate the neuromuscular system, Park said. “But the limitation of a traditional exoskeleton is that it limits the natural degrees of freedom of the body,” he added. The ankle is naturally capable of a complicated three-dimensional motion, but most rigid exoskeletons allow only a single pivot point.

The soft orthotic device, by contrast, enabled the researchers to mimic the biological structure of the lower leg. The device’s artificial tendons were attached to four PAMs, which correspond with three muscles in the foreleg and one in the back that control ankle motion. The prototype was capable of generating an ankle range of sagittal motion of 27 degrees — sufficient for a normal walking gait.

The tradeoff, however, is that the soft device is more difficult to control than a rigid exoskeleton. It thus required more sophisticated sensing to track the position of the ankle and foot and a more intelligent scheme for controlling foot motion, Park said.

Among the innovations in the device are sensors made of a touch-sensitive artificial skin, thin rubber sheets that contain long microchannels filled with a liquid metal alloy. When these rubber sheets are stretched or pressed, the shapes of the microchannels change, which in turn causes changes in the electrical resistance of the alloy. These sensors were positioned on the top and at the side of the ankle.

Park said additional work will be necessary to improve the wearability of the device. This includes artificial muscles that are less bulky than the commercially produced PAMs used in this project. Park said a subsequent project, which will be presented at an upcoming technical conference, used flat, strap-like actuators instead of the cylindrical PAMs.

The device has yet to be tested on patients to determine its performance as a rehabilitative tool.

A video of the device is available on YouTube.
http://www.youtube.com/watch?v=IbXRiTbuDvY
This research was sponsored by the Wyss Institute and the National Science Foundation.

Byron Spice | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Life Sciences:

nachricht New Technique Maps Elusive Chemical Markers on Proteins
03.07.2015 | Salk Institute for Biological Studies

nachricht New approach to targeted cancer therapy
03.07.2015 | CECAD - Cluster of Excellence at the University of Cologne

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Viaducts with wind turbines, the new renewable energy source

Wind turbines could be installed under some of the biggest bridges on the road network to produce electricity. So it is confirmed by calculations carried out by a European researchers team, that have taken a viaduct in the Canary Islands as a reference. This concept could be applied in heavily built-up territories or natural areas with new constructions limitations.

The Juncal Viaduct, in Gran Canaria, has served as a reference for Spanish and British researchers to verify that the wind blowing between the pillars on this...

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Im Focus: Bionic eye clinical trial results show long-term safety, efficacy vision-restoring implant

Patients using Argus II experienced significant improvement in visual function and quality of life

The three-year clinical trial results of the retinal implant popularly known as the "bionic eye," have proven the long-term efficacy, safety and reliability of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

Siemens receives order for offshore wind power plant in Great Britain

03.07.2015 | Press release

'Déjà vu all over again:' Research shows 'mulch fungus' causes turfgrass disease

03.07.2015 | Agricultural and Forestry Science

Discovery points to a new path toward a universal flu vaccine

03.07.2015 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>