Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Billions of years ago, microbes were key in developing modern nitrogen cycle

23.02.2009
As the world marks the 200th anniversary of Charles Darwin's birth, there is much focus on evolution in animals and plants. But new research shows that for the countless billions of tiniest creatures – microbes – large-scale evolution was completed 2.5 billion years ago.

"For microbes, it appears that almost all of their major evolution took place before we have any record of them, way back in the dark mists of prehistory," said Roger Buick, a University of Washington paleontologist and astrobiologist.

All living organisms need nitrogen, a basic component of amino acids and proteins. But for atmospheric nitrogen to be usable, it must be "fixed," or converted to a biologically useful form. Some microbes turn atmospheric nitrogen into ammonia, a form in which the nitrogen can be easily absorbed by other organisms.

But the new research shows that about 2.5 billion years ago some microbes evolved that could carry the process a step further, adding oxygen to the ammonia to produce nitrate, which also can be used by organisms. That was the beginning of what today is known as the aerobic nitrogen cycle.

The microbes that accomplished that feat are on the last, or terminal, branches of the bacteria and archaea domains of the so-called tree of life, and they are the only microbes capable of carrying out the step of adding oxygen to ammonia.

The fact that they are on those terminal branches indicates that large-scale evolution of bacteria and archaea was complete about 2.5 billion years ago, Buick said.

"Countless bacteria and archaea species have evolved since then, but the major branches have held," said Buick, a UW professor of Earth and space sciences.

He is the corresponding author of the research, which appears in the Feb. 20 edition of Science. Lead author is Jessica Garvin, a UW Earth and space sciences graduate student. Other authors are Ariel Anbar and Gail Arnold of Arizona State University and Alan Jay Kaufman of the University of Maryland. The work was funded by NASA and the National Science Foundation.

The scientists examined material from a half-mile-deep core drilled in the Pilbara region of northwest Australia. They looked specifically at a section of shale from 300 to 650 feet deep, deposited 2.5 billion years ago, and found telltale isotope signatures created in the process of denitrification, the removal of oxygen from nitrate.

If denitrification was occurring, then nitrification – the addition of oxygen to ammonia to form nitrate – also must have been taking place, Buick said. That makes the find the earliest solid evidence for the beginning of the aerobic nitrogen cycle.

"What this shale deposit has done is record the onset of the modern nitrogen cycle," he said. "This was a life-giving nutrient then and remains so today. That's why you put nitrogen fertilizer on your tomato plants, for example."

The discovery gives clues about when and how the Earth's atmosphere became oxygen rich, Buick believes.

Geochemical examination of stratigraphic samples from the core indicates that atmospheric oxygen rose in a temporary "whiff" about 2.5 billion years ago. The whiff lasted long enough to be recorded in the nitrogen isotope record, then oxygen dropped back to very low levels before the atmosphere became permanently oxygenated about 2.3 billion years ago.

It is unclear why the oxygen level declined following the temporary increase. It could have been that the oxygen was depleted rapidly as it reacted with chemicals and minerals that had not been exposed to oxygen previously, Buick said. Or something could have halted the photosynthesis that produced the oxygen in the first place.

But it seems clear, he said, that the tiniest creatures played a crucial role in completing the nitrogen cycle that life depends on today.

"All microbes are amazing chemists compared to us. We're really very boring, metabolically," Buick said.

"To understand early evolution of life, we have to know how organisms were nourished and how they evolved. This work helps us on both of those counts," he said.

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>