Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thus the bile does not overflow

13.05.2009
HZI scientists have elucidated which bacteria block artificial bile ducts

A consequence of the different cancers of the hepatobiliary system is blocked bile ducts. However, artificial catheters known as "stents" can remediate this problem. Stents are medical implants which reopen narrowed bile ducts to allow the outflow of bile.

However, bacteria colonize these catheters forming dense communities, so-called biofilms. Inside these biofilms, bacteria are not only protected from the immune response initiated by the host but also from antibiotics.

Since the bacterial community is unable to be controlled via antibiotics, the catheters become blocked by the biofilms, which then have to be exchanged on a regular basis, an invasive process.

Scientists of the Helmholtz-Centre for Infection Research (HZI) in Braunschweig have analyzed biliary stents from patients being treated at the medical clinics in Salzgitter and Braunschweig. They would like to know which bacteria inhabit these stents so that such knowledge can facilitate the development of medications tailored to combat against development of these biofilms. The HZI-Scientists identified specific bacterial species as main colonizers of these stents. In addition they statistically evaluated the composition of the bacterial communities of the catheters. Their results have now been published by the scientific journal International Society for Microbial Ecology Journal.

The Scientists of the HZI Department "Microbial Pathogenesis" used material from biliary stents of patients where old catheters had been replaced by new ones. For this reason, they collaborated with the Surgery Clinic of the Braunschweig General Hospital and the Department of Internal Medicine of the Klinikum Salzgitter. The Klinikum Salzgitter is the most specialized and experienced clinic for biliary stent replacement in the region, where each week patients receive new biliary stents. "This had the advantage that we could compare a huge set of samples" Dietmar Pieper, Group leader in the Department of Microbial Pathogenesis said. "This huge set of samples could only be analyzed as we did not try to culture the bacteria on plates, but used sophisticated culture-independent methods" Pieper said. The main goals of the scientists were to determine the composition of the bacterial communities in different biliary stents, their interactions with each other and which bacteria most often occur.

"Certainly, there are significant differences between the patients and consequently between the communities" Pieper said. In general, however, the Scientists could identify recurrent dominant colonizers, such as the bacterium Streptococcus anginosus. Interactions and dependencies among the bacteria were gathered by statistical means. "We could show that the colonization of the stents followed principles ressembling those known for biofilm development of dental plaques" Pieper said.

In the future, the scientists will analyze the influence of different environmental factors such as a healthy lifestyle on the composition of such communities. "With these results an important cornerstone was laid towards the development of new methods and medications", Pieper said.

Originalartikel: Characterization of the complex bacterial communities colonizing biliary stents reveals a host-dependent diversity. Britta K Scheithauer, Melissa L Wos-Oxley, Björn Ferslev, Helmut Jablonowski and Dietmar H Pieper. ISME J advance online publication, April 9, 2009; doi:10.1038/ismej.2009.36

Dr. Bastian Dornbach | EurekAlert!
Further information:
http://www.helmholtz-hzi.de

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>